摩爾定律放緩 靠啥提升AI晶片運算力?
作者 : 黃燁鋒,EE Times China
2021-07-26
對於電子科技革命的即將終結的說法,一般認為即是指摩爾定律的終結——摩爾定律一旦無法延續,也就意味著資訊技術的整棟大樓建造都將出現停滯,那麼第三次科技革命也就正式結束了。這種聲音似乎是從十多年前就有的,但這波革命始終也沒有結束。AI技術本質上仍然是第三次科技革命的延續……
人工智慧(AI)的技術發展,被很多人形容為第四次科技革命。前三次科技革命,分別是蒸汽、電氣、資訊技術(電子科技)革命。彷彿這“第四次”有很多種說辭,比如有人說第四次科技革命是生物技術革命,還有人說是量子技術革命。但既然AI也是第四次科技革命之一的候選技術,而且作為資訊技術的組成部分,卻又獨立於資訊技術,即表示它有獨到之處。
電子科技革命的即將終結,一般認為即是指摩爾定律的終結——摩爾定律一旦無法延續,也就意味著資訊技術的整棟大樓建造都將出現停滯,那麼第三次科技革命也就正式結束了。這種聲音似乎是從十多年前就有,但這波革命始終也沒有結束。
AI技術本質上仍然是第三次科技革命的延續,它的發展也依託於幾十年來半導體科技的進步。這些年出現了不少專門的AI晶片——而且市場參與者相眾多。當某一個類別的技術發展到出現一種專門的處理器為之服務的程度,那麼這個領域自然就不可小覷,就像當年GPU出現專門為圖形運算服務一樣。
所以AI晶片被形容為CPU、GPU之後的第三大類電腦處理器。AI專用處理器的出現,很大程度上也是因為摩爾定律的發展進入緩慢期:電晶體的尺寸縮減速度,已經無法滿足需求,所以就必須有某種專用架構(DSA)出現,以快速提升晶片效率,也才有了專門的AI晶片。
另一方面,摩爾定律的延緩也成為AI晶片發展的桎梏。在摩爾定律和登納德縮放比例定律(Dennard Scaling)發展的前期,電晶體製程進步為晶片帶來了相當大的助益,那是「happy scaling down」的時代——CPU、GPU都是這個時代受益,不過Dennard Scaling早在45nm時期就失效了。
AI晶片作為第三大類處理器,在這波發展中沒有趕上happy scaling down的好時機。與此同時,AI應用對運算力的需求越來越貪婪。今年WAIC晶片論壇圓桌討論環節,燧原科技創始人暨CEO趙立東說:「現在訓練的GPT-3模型有1750億參數,接近人腦神經元數量,我以為這是最大的模型了,要千張Nvidia的GPU卡才能做。談到AI運算力需求、模型大小的問題,說最大模型超過萬億參數,又是10倍。」
英特爾(Intel)研究院副總裁、中國研究院院長宋繼強說:「前兩年用GPU訓練一個大規模的深度學習模型,其碳排放量相當於5台美式車整個生命週期產生的碳排量。」這也說明了AI運算力需求的貪婪,以及提供運算力的AI晶片不夠高效。
不過作為產業的底層驅動力,半導體製造技術仍源源不斷地為AI發展提供推力。本文將討論WAIC晶片論壇上聽到,針對這個問題的一些前瞻性解決方案——有些已經實現,有些則可能有待時代驗證。
XPU、摩爾定律和異質整合
「電腦產業中的貝爾定律,是說能效每提高1,000倍,就會衍生出一種新的運算形態。」中科院院士劉明在論壇上說,「若每瓦功耗只能支撐1KOPS的運算,當時的這種運算形態是超算;到了智慧型手機時代,能效就提高到每瓦1TOPS;未來的智慧終端我們要達到每瓦1POPS。 這對IC提出了非常高的要求,如果依然沿著CMOS這條路去走,當然可以,但會比較艱辛。」
針對性能和效率提升,除了尺寸微縮,半導體產業比較常見的思路是電晶體結構、晶片結構、材料等方面的最佳化,以及處理架構的革新。
(1)AI晶片本身其實就是對處理器架構的革新,從運算架構的層面來看,針對不同的應用方向造不同架構的處理器是常規,更專用的處理器能促成效率和性能的成倍增長,而不需要依賴於電晶體尺寸的微縮。比如GPU、神經網路處理器(NPU,即AI處理器),乃至更專用的ASIC出現,都是這類思路。
CPU、GPU、NPU、FPGA等不同類型的晶片各司其職,Intel這兩年一直在推行所謂的「XPU」策略就是用不同類型的處理器去做不同的事情,「整合起來各取所需,用組合拳會好過用一種武器去解決所有問題。」宋繼強說。Intel的晶片產品就涵蓋了幾個大類,Core CPU、Xe GPU,以及透過收購獲得的AI晶片Habana等。
另外針對不同類型的晶片,可能還有更具體的最佳化方案。如當代CPU普遍加入AVX512指令,本質上是特別針對深度學習做加強。「專用」的不一定是處理器,也可以是處理器內的某些特定單元,甚至固定功能單元,就好像GPU中加入專用的光線追蹤單元一樣,這是當代處理器普遍都在做的一件事。
(2)從電晶體、晶片結構層面來看,電晶體的尺寸現在仍然在縮減過程中,只不過縮減幅度相比過去變小了——而且為緩解電晶體性能的下降,需要有各種不同的技術來輔助尺寸變小。比如說在22nm節點之後,電晶體變為FinFET結構,在3nm之後,電晶體即將演變為Gate All Around FET結構。最終會演化為互補FET (CFET),其本質都是電晶體本身充分利用Z軸,來實現微縮性能的提升。
劉明認為,「除了基礎元件的變革,IC現在的發展還是比較多元化,包括新材料的引進、元件結構革新,也包括微影技術。長期賴以微縮的基本手段,現在也在發生巨大的變化,特別是未來3D的異質整合。這些多元技術的協同發展,都為晶片整體性能提升帶來了很好的增益。」
他並指出,「從電晶體級、到晶圓級,再到晶片堆疊、引線接合(lead bonding),精準度從毫米向奈米演進,互連密度大大提升。」從晶圓/裸晶的層面來看,則是眾所周知的朝more than moore’s law這樣的路線發展,比如把兩片裸晶疊起來。現在很熱門的chiplet技術就是比較典型的並不依賴於傳統電晶體尺寸微縮,來彈性擴展性能的方案。
台積電和Intel這兩年都在大推將不同類型的裸晶,異質整合的技術。2.5D封裝方案典型如台積電的CoWoS,Intel的EMIB,而在3D堆疊上,Intel的Core LakeField晶片就是用3D Foveros方案,將不同的裸晶疊在一起,甚至可以實現兩片運算裸晶的堆疊、互連。
之前的文章也提到過AMD剛發佈的3D V-Cache,將CPU的L3 cache裸晶疊在運算裸晶上方,將處理器的L3 cache大小增大至192MB,對儲存敏感延遲應用的性能提升。相比Intel,台積電這項技術的獨特之處在於裸晶間是以混合接合(hybrid bonding)的方式互連,而不是micro-bump,做到更小的打線間距,以及晶片之間數十倍通訊性能和效率提升。
這些方案也不直接依賴傳統的電晶體微縮方案。這裡實際上還有一個方面,即新材料的導入專家們沒有在論壇上多說,本文也略過不談。
1,000倍的性能提升
劉明談到,當電晶體微縮的空間沒有那麼大的時候,產業界傾向於採用新的策略來評價技術——「PPACt」——即Powe r(功耗)、Performance (性能)、Cost/Area-Time (成本/面積-時間)。t指的具體是time-to-market,理論上應該也屬於成本的一部分。
電晶體微縮方案失效以後,「多元化的技術變革,依然會讓IC性能得到進一步的提升。」劉明說,「根據預測,這些技術即使不再做尺寸微縮,也會讓IC的晶片性能做到500~1,000倍的提升,到2035年實現Zetta Flops的系統性能水準。且超算的發展還可以一如既往地前進;單裸晶儲存容量變得越來越大,IC依然會為產業發展提供基礎。」
500~1,000倍的預測來自DARPA,感覺有些過於樂觀。因為其中的不少技術存在比較大的邊際遞減效應,而且有更實際的工程問題待解決,比如運算裸晶疊層的散熱問題——即便業界對於這類工程問題的探討也始終在持續。
不過1,000倍的性能提升,的確說明摩爾定律的終結並不能代表第三次科技革命的終結,而且還有相當大的發展空間。尤其本文談的主要是AI晶片,而不是更具通用性的CPU。
矽光、記憶體內運算和神經型態運算
在非傳統發展路線上(以上內容都屬於半導體製造的常規思路),WAIC晶片論壇上宋繼強和劉明都提到了一些頗具代表性的技術方向(雖然這可能與他們自己的業務方向或研究方向有很大的關係)。這些技術可能尚未大規模推廣,或者仍在商業化的極早期。
(1)近記憶體運算和記憶體內運算:處理器性能和效率如今面臨的瓶頸,很大程度並不在單純的運算階段,而在資料傳輸和儲存方面——這也是共識。所以提升資料的傳輸和存取效率,可能是提升整體系統性能時,一個非常靠譜的思路。
這兩年市場上的處理器產品用「近記憶體運算」(near-memory computing)思路的,應該不在少數。所謂的近記憶體運算,就是讓儲存(如cache、memory)單元更靠近運算單元。CPU的多層cache結構(L1、L2、L3),以及電腦處理器cache、記憶體、硬碟這種多層儲存結構是常規。而「近記憶體運算」主要在於究竟有多「近」,cache記憶體有利於隱藏當代電腦架構中延遲和頻寬的局限性。
這兩年在近記憶體運算方面比較有代表性的,一是AMD——比如前文提到3D V-cache增大處理器的cache容量,還有其GPU不僅在裸晶內導入了Infinity Cache這種類似L3 cache的結構,也更早應用了HBM2記憶體方案。這些實踐都表明,儲存方面的革新的確能帶來性能的提升。
另外一個例子則是Graphcore的IPU處理器:IPU的特點之一是在裸晶內堆了相當多的cache資源,cache容量遠大於一般的GPU和AI晶片——也就避免了頻繁的訪問外部儲存資源的操作,極大提升頻寬、降低延遲和功耗。
近記憶體運算的本質仍然是馮紐曼架構(Von Neumann architecture)的延續。「在做處理的過程中,多層級的儲存結構,資料的搬運不僅僅在處理和儲存之間,還在不同的儲存層級之間。這樣頻繁的資料搬運帶來了頻寬延遲、功耗的問題。也就有了我們經常說的運算體系內的儲存牆的問題。」劉明說。
構建非馮(non-von Neumann)架構,把傳統的、以運算為中心的馮氏架構,變換一種新的運算範式。把部分運算力下推到儲存。這便是記憶體內運算(in-memory computing)的概念。
記憶體內運算的就現在看來還是比較新,也有稱其為「存算一體」。通常理解為在記憶體中嵌入演算法,儲存單元本身就有運算能力,理論上消除資料存取的延遲和功耗。記憶體內運算這個概念似乎這在資料爆炸時代格外醒目,畢竟可極大減少海量資料的移動操作。
其實記憶體內運算的概念都還沒有非常明確的定義。現階段它可能的內涵至少涉及到在儲記憶體內部,部分執行資料處理工作;主要應用於神經網路(因為非常契合神經網路的工作方式),以及這類晶片具體的工作方法上,可能更傾向於神經型態運算(neuromorphic computing)。
對於AI晶片而言,記憶體內運算的確是很好的思路。一般的GPU和AI晶片執行AI負載時,有比較頻繁的資料存取操作,這對性能和功耗都有影響。不過記憶體內運算的具體實施方案,在市場上也是五花八門,早期比較具有代表性的Mythic導入了一種矩陣乘的儲存架構,用40nm嵌入式NOR,在儲記憶體內部執行運算,不過替換掉了數位週邊電路,改用類比的方式。在陣列內部進行模擬運算。這家公司之前得到過美國國防部的資金支援。
劉明列舉了近記憶體運算和記憶體內運算兩種方案的例子。其中,近記憶體運算的這個方案應該和AMD的3D V-cache比較類似,把儲存裸晶和運算裸晶疊起來。
劉明指出,「這是我們最近的一個工作,採用hybrid bonding的技術,與矽通孔(TSV)做比較,hybrid bonding功耗是0.8pJ/bit,而TSV是4pJ/bit。延遲方面,hybrid bonding只有0.5ns,而TSV方案是3ns。」台積電在3D堆疊方面的領先優勢其實也體現在hybrid bonding混合鍵合上,前文也提到了它具備更高的互連密度和效率。
另外這套方案還將DRAM刷新頻率提高了一倍,從64ms提高至128ms,以降低功耗。「應對刷新率變慢出現拖尾bit,我們引入RRAM TCAM索引這些tail bits」劉明說。
記憶體內運算方面,「傳統運算是用布林邏輯,一個4位元的乘法需要用到幾百個電晶體,這個過程中需要進行資料來回的移動。記憶體內運算是利用單一元件的歐姆定律來完成一次乘法,然後利用基爾霍夫定律完成列的累加。」劉明表示,「這對於今天深度學習的矩陣乘非常有利。它是原位的運算和儲存,沒有資料搬運。」這是記憶體內運算的常規思路。
「無論是基於SRAM,還是基於新型記憶體,相比近記憶體運算都有明顯優勢,」劉明認為。下圖是記憶體內運算和近記憶體運算,精準度、能效等方面的對比,記憶體內運算架構對於低精準度運算有價值。
下圖則總結了業內主要的一些記憶體內運算研究,在精確度和能效方面的對應關係。劉明表示,「需要高精確度、高運算力的情況下,近記憶體運算目前還是有優勢。不過記憶體內運算是更新的技術,這幾年的進步也非常快。」
去年阿里達摩院發佈2020年十大科技趨勢中,有一個就是存算一體突破AI算力瓶頸。不過記憶體內運算面臨的商用挑戰也一點都不小。記憶體內運算的通常思路都是類比電路的運算方式,這對記憶體、運算單元設計都需要做工程上的考量。與此同時這樣的晶片究竟由誰來造也是個問題:是記憶體廠商,還是數文書處理器廠商?(三星推過記憶體內運算晶片,三星、Intel垂直整合型企業似乎很適合做記憶體內運算…)
(2)神經型態運算:神經型態運算和記憶體內運算一樣,也是新興技術的熱門話題,這項技術有時也叫作compute in memory,可以認為它是記憶體內運算的某種發展方向。神經型態和一般神經網路AI晶片的差異是,這種結構更偏「類人腦」。
進行神經型態研究的企業現在也逐漸變得多起來,劉明也提到了AI晶片「最終的理想是在結構層次模仿腦,元件層次逼近腦,功能層次超越人腦」的「類腦運算」。Intel是比較早關注神經型態運算研究的企業之一。
傳說中的Intel Loihi就是比較典型存算一體的架構,「這片裸晶裡面包含128個小核心,每個核心用於模擬1,024個神經元的運算結構。」宋繼強說,「這樣一塊晶片大概可以類比13萬個神經元。我們做到的是把768個晶片再連起來,構成接近1億神經元的系統,讓學術界的夥伴去試用。」
「它和深度學習加速器相比,沒有任何浮點運算——就像人腦裡面沒有乘加器。所以其學習和訓練方法是採用一種名為spike neutral network的路線,功耗很低,也可以訓練出做視覺辨識、語言辨識和其他種類的模型。」宋繼強認為,不採用同步時脈,「刺激的時候就是一個非同步電動勢,只有工作部分耗電,功耗是現在深度學習加速晶片的千分之一。」
「而且未來我們可以對不同區域做劃分,比如這兒是視覺區、那兒是語言區、那兒是觸覺區,同時進行多模態訓練,互相之間產生關聯。這是現在的深度學習模型無法比擬的。」宋繼強說。這種神經型態運算晶片,似乎也是Intel在XPU方向上探索不同架構運算的方向之一。
(2)微型化矽光:這個技術方向可能在層級上更偏高了一些,不再晶片架構層級,不過仍然值得一提。去年Intel在Labs Day上特別談到了自己在矽光(Silicon Photonics)的一些技術進展。其實矽光技術在連接資料中心的交換機方面,已有應用了,發出資料時,連接埠處會有個收發器把電訊號轉為光訊號,透過光纖來傳輸資料,另一端光訊號再轉為電訊號。不過傳統的光收發器成本都比較高,內部元件數量大,尺寸也就比較大。
Intel在整合化的矽光(IIIV族monolithic的光學整合化方案)方面應該是商業化走在比較前列的,就是把光和電子相關的組成部分高度整合到晶片上,用IC製造技術。未來的光通訊不只是資料中心機架到機架之間,也可以下沉到板級——就跟現在傳統的電I/O一樣。電互連的主要問題是功耗太大,也就是所謂的I/O功耗牆,這是這類微型化矽光元件存在的重要價值。
這其中存在的技術挑戰還是比較多,如做資料的光訊號調變的調變器調變器,據說Intel的技術使其實現了1,000倍的縮小;還有在接收端需要有個探測器(detector)轉換光訊號,用所謂的全矽微環(micro-ring)結構,實現矽對光的檢測能力;波分複用技術實現頻寬倍增,以及把矽光和CMOS晶片做整合等。
Intel認為,把矽光模組與運算資源整合,就能打破必須帶更多I/O接腳做更大尺寸處理器的這種趨勢。矽光能夠實現的是更低的功耗、更大的頻寬、更小的接腳數量和尺寸。在跨處理器、跨伺服器節點之間的資料互動上,這類技術還是頗具前景,Intel此前說目標是實現每根光纖1Tbps的速率,並且能效在1pJ/bit,最遠距離1km,這在非本地傳輸上是很理想的數字。
還有軟體…
除了AI晶片本身,從整個生態的角度,包括AI感知到運算的整個鏈條上的其他組成部分,都有促成性能和效率提升的餘地。比如這兩年Nvidia從軟體層面,針對AI運算的中間層、庫做了大量最佳化。相同的底層硬體,透過軟體最佳化就能實現幾倍的性能提升。
宋繼強說,「我們發現軟體最佳化與否,在同一個硬體上可以達到百倍的性能差距。」這其中的餘量還是比較大。
在AI開發生態上,雖然Nvidia是最具發言權的;但從戰略角度來看,像Intel這種研發CPU、GPU、FPGA、ASIC,甚至還有神經型態運算處理器的企業而言,不同處理器統一開發生態可能更具前瞻性。Intel有個稱oneAPI的軟體平台,用一套API實現不同硬體性能埠的對接。這類策略對廠商的軟體框架構建能力是非常大的考驗——也極大程度關乎底層晶片的執行效率。
在摩爾定律放緩、電晶體尺寸微縮變慢甚至不縮小的前提下,處理器架構革新、異質整合與2.5D/3D封裝技術依然可以達成1,000倍的性能提升;而一些新的技術方向,包括近記憶體運算、記憶體內運算和微型矽光,能夠在資料訪存、傳輸方面產生新的價值;神經型態運算這種類腦運算方式,是實現AI運算的目標;軟體層面的最佳化,也能夠帶動AI性能的成倍增長。所以即便摩爾定律嚴重放緩,AI晶片的性能、效率提升在上面提到的這麼多方案加持下,終將在未來很長一段時間內持續飛越。這第三(四)次科技革命恐怕還很難停歇。
資料來源:https://www.eettaiwan.com/20210726nt61-ai-computing/?fbclid=IwAR3BaorLm9rL2s1ff6cNkL6Z7dK8Q96XulQPzuMQ_Yky9H_EmLsBpjBOsWg
同時也有5部Youtube影片,追蹤數超過24萬的網紅啟點文化,也在其Youtube影片中提到,【線上課程】《人際斷捨離》~ 讓你留下怦然心動的關係,活出輕盈自在的人生! 課程連結:https://pse.is/E5MW5 第一講免費試聽:https://youtu.be/YyLvd1cNcDw 不定期推出補充教材,讓學習無限延伸:https://pse.is/LVRLY 【7/4 開課!】...
「視覺區辨定義」的推薦目錄:
視覺區辨定義 在 台灣物聯網實驗室 IOT Labs Facebook 的最讚貼文
跨界圍攻:「AI 視覺」公司已集體殺入智能駕駛圈
2021-05-22
雷鋒網
如今的智能汽車賽道,說挨肩迭背也不為過。
新勢力派引領變革,最為二級市場所看好;泛網際網路派占流量高地,擅技術遷移;傳統車企派根基夯實,品牌名聲享譽在外。
甚至財大氣粗的某地產派也曾放下豪言――力爭 3-5 年成為世界規模最大、實力最強的新能源汽車集團。
如華山比武般,大俠們個個嚴陣以待,各方勢力黃巾高擎,左右開弓。
你看看,前有行業鐵幕,中夾破釜沉舟之心,後是險峻江湖,哪還有初進牛犢的落腳之處?
即便如此,在月前燥熱尚未消退的上海車展後,鮮少被提及的AI視覺公司還是擠了進來。
看慣了巨頭們的聲勢浩蕩,轉身發現AI視覺企業們的入局講究一個循序漸進,起承轉合。
而他們的悄然進入,也給智能駕駛領域增添了幾段新故事。
海康威視:左手自研、右手投資
AI安防老大哥海康,深耕智能駕駛市場履行一貫的低調風格。
其對智能駕駛的綢繆始於2015年,當時海康內部計劃開展新業務,起初確定的業務有三:海康汽車電子、海康機器人、海康螢石。
2016年7月,耗資1.5億的海康汽車技術正式成立。
在此前後,海康還分別於2016年6月投資了威視汽車科技,2017年7月成立了海康汽車軟體。
2018年是海康智能駕駛的上升之年,市場渠道、技術研發上均有突破。
2018年2月,他們上線高級駕駛輔助系統、自動泊車APA+,同年又成功打入2019款保時捷卡宴的配置中。
汽車產業以穩為重,鏈條長、利益盤根錯節,新入者切入並不容易,而海康卻出其不意一舉打入高端。
數據顯示,截至2018年底,海康汽車已經通過了20家OEM的審核並成為其合格供應商,公司的主要客戶包括一汽集團、北京汽車、上汽榮威、上汽名爵、本田汽車等。
其中,定點項目超過200個,已量產的項目超過100個,覆蓋500家渠道合作夥伴。
成立子公司自研之外,投資也是海康較為看中的一大路徑。
在成立汽車電子公司之前,海康就曾在2016年入股毫米波雷達企業森思泰克,並成為後者的第二大股東。
2013年成立的森思泰克既是毫米波雷達第一批探路者,也是成績較為優秀的領軍企業之一。
森思泰克創始人秦屹是英國海歸的雷達專家,在英從事雷達研發和製造十餘年。
據悉,森思泰克所聚團隊成員中80%具有軍工背景,掌握雷達硬體、軟體和量產工藝等幾乎全部核心技術。
據悉,森思泰克毫米波雷達在北京、石家莊設研發中心,在蕪湖設總廠,在杭州設車載事業部。
石家莊,有軍工雷達大本營之稱,軍民毫米波雷達研發人才密集,且電科雷達研發54所和13所都在石家莊。
森思泰克也頗為爭氣。
2019年,思泰克首次實現大批量77GHz車載毫米波雷達國產化、突破國際巨頭壟斷。
森思泰克的77GHz毫米波雷達成為國內首個真正實現「上路」的ADAS毫米波雷達傳感器。
目前,森思泰克已成為紅旗、一汽、韓國現代、東風日產、長城、長安等國內外車企體系內供應商。
海康與森思合作的高分毫米波成像雷達+視覺融合技術,或許將對壘低線束雷射雷達。
大華股份:立足整車,三電、網聯、自動駕駛多點齊發
零跑汽車脫胎於大華股份的汽車部門,獨立後獲得了大華股份的技術和資金支持。
2015年,大華股份副董事長兼任大華股份CTO朱江明親自下場,成立零跑。
經歷2019年新能源補貼大退坡,不少新勢力造車企業已經出現嚴重資金問題,且變現存疑。
零跑汽車亦不例外。
2018年,零跑虧損 3.07 億元後,2019 年上半年又持續虧損約 2 億元。
2019年1月4日,零跑汽車第一款車S01上市,該車2019年全年交付約1000輛。
對於連續虧損的零跑,唱衰論一直也在網上發酵。
朱江明對此表示,「即使不融資,零跑也能再活三年。」他透露,大華股份將持續為零跑輸送資金,「當然我們希望能更多的融資,發展得更快些。」
在經歷融資受阻後,2021年伊始,零跑官宣融資43億元,合肥政府投資平台亦在其中。
今年年初,此前曾投資蔚來的合肥市政府與零跑方面簽訂戰略合作協議,未來合肥方面將對零跑B輪融資投資約20億元,並展開更多合作。
現金流方面,從不被業界看好,到巨額融資的到帳,仿佛又讓市場看到了可能性。
技術層面,零跑汽車稱自主研發了三電系統、智能網聯繫統、自動駕駛系統三大核心技術,並完全掌握自動駕駛核心硬體平台和算法技術,實現對自動駕駛感知、決策、執行層關鍵技術的自主化全覆蓋。
產品層面,零跑汽車目前旗下擁有3款量產車型,分別為:零跑T03、零跑S01以及零跑C11。
三款產品風格各異,銷量不一。
2020年,零跑汽車官方消息稱,2020年累計銷量達11391輛,其中T03為主力軍,貢獻了10266輛。
創始人朱江明也底氣頗足:「2023年零跑進入造車新勢力TOP3、2025年在國內新能源汽車市占率達到10%」。
商湯:求精感知技術,並進艙內艙外
與其他AI獨角獸相比,商湯在自動駕駛上布局較早,也更全面。
2017年進軍自動駕駛,商湯的汽車產業布局可分為艙內(智能車艙)和艙外(智能駕駛)兩大層面。
智能車艙層,基於前裝量產解決方案,以視覺感知技術為錨點,由點及面,覆蓋用戶從上車到用車的多個場景。
商湯的SenseAuto Cabin智能車艙解決方案包括駕駛員感知系統、座艙感知系統、智能進入等等功能。
據悉,在過去的兩年多時間裡,商湯已經拿下了30多個國內外頭部夥伴的智能車艙定點量產項目,覆蓋車輛總數超過1300萬輛,其中10 余個項目已經實現了量產交付。
智能駕駛層,商湯選擇與主機廠合作,做汽車廠商(OEM)及一級供應商(Tier1)的解決方案供應商。
在自動駕駛感知、決策和執行三大要素中,汽車廠商和Tier1占據重要角色。
2017年,商湯與OEM廠商本田簽訂了為期5年的長期合作協議,研發適合乘用車場景的L4級自動駕駛方案。
2018年,商湯完成杭州、上海半開放場地內實現無接管自動駕駛。2019年,在日本落地「AI自動駕駛公園」,將用於自動駕駛汽車的研發和測試,並面向公眾開放。
商湯的自動駕駛業務定位,是以視覺為主,其他元素為輔。
視覺之外,商湯在高精度地圖和雷射雷達、毫米波雷達等方面皆有技術儲備。
通過搭配多種不同傳感器,實現感知、分析預測、決策規劃控制、城市級三維地圖重建及無人車高精度定位能力等技術功能。
目前,商湯對自動駕駛技術進行了多次疊代,形成了一套較為成熟的智能駕駛方案:SenseAuto Pilot智能駕駛解決方案,聚焦 L2+ 級高級輔助駕駛至L4級自動駕駛創新,並在上海車展首次發布SenseAuto Pilot-P駕駛領航方案。
軟體之外,2019年3月,商湯還推出首款原創機器人SenseRover X自動駕駛小車,這是款針對自動駕駛的教學產品。
奧比中光:戰投+自研,兩條腿走路
奧比中光是AI初創企業中對智能汽車投入最多的公司之一。
作為一家AI 3D感知技術方案提供商,成立於2013年的奧比中光現今已在3D傳感領域深耕近8年。
3D傳感作為人工智慧領域最核心的視覺感知技術,融合了晶片、算法、光學、軟體等多交叉學科技術,是人工智慧時代感知識別、新型人機互動等最為核心的技術載體。
除3D結構光外,奧比中光在雙目、iTOF、dTOF、雷射雷達等主流3D視覺感知技術領域也有長遠布局。
早在2018年,奧比中光就投資雷射雷達晶片級解決方案提供商飛芯電子。
飛芯電子成立於2016年,是一家專注於光電設備、雷射雷達研發、集成電路設計的高新技術企業。
成立僅2年,飛芯電子獲得了博世等注資。
據悉,飛芯電子以研發、生產雷射雷達系統及核心晶片為主要業務,客戶群體主要面向國內外汽車、機器人、無人機等生產研發廠商。
飛芯電子稱,其針對行業痛點,採用了連續波載調製或相干外差探測方案,利用焦平面點雲測距技術,滿足較高的空間解析度和較大的視場角,探測距離可超過200m,且無需複雜昂貴的機械掃描裝置,不斷提高系統可靠性,也使獲得的圖像更為清晰。
2019年4月,奧比中光成立車載3D視覺傳感方案提供商奧銳達。
奧銳達的業務重心在智能座艙,產品包括ToF攝像頭模組、雷射雷達等硬體以及3D ToF智能座艙方案。
承襲了奧比中光的3D視覺感知技術,奧銳達可為智能汽車帶來DMS、OMS、手勢識別、人臉識別、身份驗證等多種3D化智能功能。
其金融級安全的3D人臉識別方案,保護駕乘人員的信息安全;通過3D-ToF 攝像頭,實現多區域手勢控制;同時,智能汽車還可以通過3D信息,判斷駕乘人員體型、座艙內位置等。
近日,奧銳達還發布了為智能汽車量身定製的3D ToF智能座艙方案。
虹軟:主攻艙內,走軟硬一體之路
2018年,為應對手機市場見頂飽和,虹軟正式將業務從智慧型手機領域拓展至智能汽車、IoT等領域,一舉橫向突進自動駕駛市場。
虹軟科技創始人兼CEO鄧暉曾表示,未來每輛汽車裡都有10個以上的攝像頭,智能座艙將成為智能駕駛視覺AI的重點應用場景。
與其手機定位一樣,虹軟的智能汽車走軟硬一體解決方案,力圖做車載視覺一站式解決方案的供應商。
從招股書看,截至2018年底,虹軟科技的「汽車等loT產品」的業務收入僅367.95萬元,占比不足1%。
與多數視覺企業加裝雷射雷達等技術不同,虹軟的的自動駕駛解決方案完全基於視覺層面,且核心聚焦在車內智能。
虹軟科技的智能駕駛視覺解決方案,包括車內安全駕駛預警、駕駛員身份識別、車內安全輔助、輔助駕駛預警、自動泊車等眾多解決方案。
2019年3月,虹軟入股開易(北京)科技,後者主營業務包括主動安全智能終端(ADAS+DMS+人臉識別)、SDK軟體服務以及硬體整體解決方案。
2019年,虹軟在科創板上市。
虹軟表示,其在計算機視覺領域積累深厚,融合其暗光高反差拍攝、防抖等影像視頻增強算法技術,即使在車內光線不佳、人臉角度多變、車輛晃動等特殊情況下,也能夠很好地完成車輛周圍環境監測和車內人員監測等功能。
上市後,虹軟大力布局智能汽車及其他 IoT 智能設備領域,目前成效初現。
據虹軟表示,智能汽車板塊2019年開始真正量產。
數據顯示,2020年,智能駕駛視覺解決方案業務增長較快,實現營業收入6592.99萬元,同比增長310.61%。
據悉,虹軟智能駕駛相關產品包括DMS(駕駛員識別系統)、ADAS(高級駕駛輔助系統)、BSD(盲區檢測系統)、OMS(乘客識別系統)、Interact(視覺互動系統)、Authenticate(生物認證)、AVM(3D環景監視系統)、AR HUD(AR抬頭顯示)和智能後備箱等各類以核心算法為基礎的相關軟體解決方案。
高工智能汽車研究院數據顯示,DMS(駕駛員識別系統)的算法業務是其智能汽車業務的主要收入來源。
虹軟今年透露,其智能駕駛業務已實現37+7個前裝車型定點開發(37款量產車型定點,7款車型預研),以提供純算法為主,公司直接與Tier1或整車廠簽約,涉及多家國內主流車企(含造車新勢力)及部分合資車企。
格靈深瞳:最早入局,協同成長
成立於2013年,格林深瞳是最早的一批AI視覺公司,也是最早一批投入自動駕駛的AI視覺公司。
當年,格靈深瞳聯合英特爾研究院院長吳甘沙、國家智能車未來挑戰賽冠軍團隊負責人姜岩等一同創辦了一家專注於自動駕駛領域的公司――馭勢科技。
2016年,馭勢科技在北京誕生,格靈深瞳作為投資方入股馭勢科技。
過去五年,馭勢科技在洶湧潮水中奮力前行。
2017年1月的CES,馭勢科技向世界推出了無人駕駛概念車「城市移動包廂」,該車型成為了全球第三款獲得紅點設計大獎的無人車。
同年,這家公司分別在4月和6月,於白雲機場、杭州來福士率先展開面向普通公眾的無人駕駛商業化運營。
今年1月21日,香港國際國際機場宣布,由馭勢科技與香港國際機場管理局共同研發的無人駕駛物流車將替代人力駕駛拖車,承擔往返機場和海天客運碼頭的行李運輸任務,意味著其在機場的運用已逐步上量。
在過去的一年中,馭勢科技與長安民生物流、一汽物流、巴斯夫(BASF)等數十家企業建立了商業合作。
據透露,在國內某豪華品牌車型上,馭勢科技提供的軟體算法也已前裝量產,並幫助該自主品牌率先推出 L3 級自動駕駛功能。去年馭勢科技交付了數百套「AI駕駛員」,實現年度業績同比增長150%。
前不久,馭勢科技宣布完成累計超10億元人民幣的新一輪融資,在這場融資中馭勢科技獲得了國家資本的參投。
馭勢科技在無人物流埋頭苦幹,潛心鑽研,其成績是在無人物流領域的業務布局幾乎占到了國內市場的70%。
2016年誕生至今,馭勢科技經歷萬千辛酸,在密如繁星的棋子中探索出一條最優解法,以機場定式,在精進自我的路上捨命狂奔。
而格林深瞳的自動駕駛之路,也隨著馭勢科技越走越遠。
曠視:立足AI視覺,做車載全套解決方案
2018年11月,曠視曾公開展示過車載AI視覺解決方案。
彼時的曠視,其解決方案基於車載系統和駕駛過程的人臉解鎖、帳戶切換、駕駛員識別、多模態交互等功能為主,並收取相應軟體使用費和服務費。
「人臉解鎖」可通過車外的攝像頭捕捉駕駛員人臉信息並進行身份的識別與確認,實現人臉解鎖車門、臨時授權人臉解鎖車門;
通過車內的攝像頭實現刷臉啟動發動機、保險箱等,「帳戶切換」功能可通過人臉識別無感知精準識別駕駛員身份,配合車載智能系統,快速調整用戶預設的車輛各項個性化配置(座椅位置、反光鏡角度、空調溫度、音樂、燈光、導航等)。
「駕駛員識別系統」可通過車內攝像頭,實時查看駕駛員駕駛狀態和行為,在駕駛員出現疲勞駕駛或分心駕駛跡象時觸發預警,保障行車安全。
曠視曾表示,其與蔚來汽車實現了未來在智能汽車應用上的深度合作,真正的無人駕駛商用較遠,曠視聚焦對人類駕駛員的理解和輔助。
的盧深視:基於3D視覺相機,為產業賦能
的盧深視在智能汽車領域的角色,更多是與第三方合作的方式。
作為三維視覺領域的佼佼者,的盧深視在高精度深度感知成像、三維實時高精度重建、三維跟蹤識別及感知等技術方向上深耕多年。
上月,的盧深視出席了2021全球自動駕駛高峰論壇,並展示了其最新3D CV相機及其應用。
的盧深視兩款自研3D CV相機,其在5米範圍誤差小於1mm,指標超越國際3D相機巨頭,量產良率達99%以上。
基於前端低功耗嵌入式平台,兩款相機均可實現非接觸式精準識別,基於結構光原理,更可還原人臉高精度3D細節信息,通過人臉立體尺寸信息精準辨識人員身份,同時對於二維和三維攻擊識別正確率高達99.99%。
多提一句,安全性上,可達金融級別。
據悉,除了智能汽車領域,兩款相機也在智能家居、金融支付、智慧交通等領域展開布局。
智能駕駛:AI視覺第二春
AI視覺眾企入局智能駕駛賽道,並非跑題創作。
其一,布局智能駕駛,是戰略向外牽引使然。
自計算機視覺出走實驗室樊籠,AI安防、自動駕駛便拿到一大波投資人的「S卡」。
當年AI落地之時,安防提供了絕佳的土壤,AI公司在此實現技術與產業的交融。
期間,AI與安防彼此成就:
安防向世界輸送的海大宇等驕子,幾乎主導了全球安防市場話語權,行業極速擴容,向城市各個領域蔓延。
AI獨角獸們也從安防起家,並逐漸走向千行百業,邁向全域。
左邊是AI安防成主要營收來源,右邊是AI安防逐漸占領一席之地。擺在入局者眼前的,是如何保持縱向持續增長的必答題。
擺脫路徑依賴,尋找AI安防之外的市場,已是當務之急。
如果說,過去五年,AI視覺公司的路徑是「通用AI SDK 重定製集成項目實施」的話,那麼未來五年,他們可嘗試「非標領域的標準市場 形成標準化產品 低成本規模化複製」的路子。
非標領域的標準市場在哪?自動駕駛、醫療、晶片赫然在列。
縱觀AI市場,目光所及賽道幾近全員虧損,掘金志認為,與高成本人力無關,因為虧損在放大;與硬體儲備也無關,因為可以OEM。
核心在於:AI安防未能標準化,項目需求又無窮多。
那就去標準化市場?有人問。
標準化市場可以一夜之間把價格做到無窮低,但高額運營支出非AI企業所能承受。
標準化市場上不去,定製化市場下不來,AI公司的突破口在哪?答案是:非標準化市場裡找到標準化路子。
賽道上,自動駕駛正是明顯的非標領域的標準市場。與AI安防共通的是,智能駕駛初創企業也依賴資本輸入。
但前者場景碎片化、項目定製化,產品標準化之路漫漫;後者以智能汽車為載體,技術上軟體定義、人機協同一旦成型,會一招吃遍天下鮮。
眼下,不少智能駕駛新勢力已實現產品量產,並獲得一定規模的現金流。
對於一眾搶灘的各路豪傑,AI視覺的入場似乎有些遲。
但智能汽車賽道正熱、格局未定,智能汽車產業鏈長、細分領域繁雜,此時入場的AI視覺,你可以說它入場稍晚,但不能說它機遇不在。
其二,自動駕駛或是計算機視覺技術應用必登之高峰。
近幾年,機器學習持續深入,計算機視覺應用亦有了飛速進展。
千山萬水跨越的人臉識別小山,是AI最成功,也最基礎的一環。
真正的AI,是貫穿感知-決策-執行的長鏈條,這一點在自動駕駛上體現得尤為極致。
感知層,通過各類硬體傳感器捕捉車輛的位置信息以及外部環境信息;
決策層的「大腦」,基於感知層輸入的信息作環境建模,從而形成對全局的理解並作出決策判斷,再向車輛發出執行的信號指令;
最後的執行層,將決策層的信號轉換為汽車的動作行為。
自動駕駛技術是人工智慧、高性能晶片、通信技術、傳感器技術、車輛控制技術、大數據技術等多領域技術的結合體,落地難度之大,各路AI無不動容。
計算機視覺應用場景萬千,自動駕駛無疑是極具挑戰性、最具想像力的一條。
越是長在懸崖之巔的花,越讓人著迷。
一直以來,在環境感知環節,存在AI視覺與雷射雷達技術路徑之爭。
不管何種路徑更優,已經在視頻物聯領域經歷過殘酷驗證,AI技術儲備上,AI視覺企業們也已攢下不少經驗。
狼多肉少,能吃幾成飽?
「自動駕駛是很低級的行業嗎?所有人都想來分一杯羹。」
這調侃入局者們聽了,大抵會覺得分外委屈。
大多數困在第一道門檻,錢。
「沒有200億不要造車」的聲量振聾發聵,造車明星蔚來也曾資金一度跌入谷底。
雖說AI視覺公司除了大華的零跑汽車外,其他參與者目前都專注於智能駕駛硬體和系統,但這也是個昂貴的行當。
不少企業本身依靠資本輸血,是否有更多資金和精力參與自動駕駛廝殺,是他們需要思考的問題。
行業壁壘不容小覷。
汽車產業發展百餘年才形成了一套嚴謹而完整的生產流程和制度,乃至於衍生出了一套基於安全的工業文明,不是後來者們在短短的幾年時間裡就能夠顛覆的。
作為智能汽車的核心體現,自動駕駛技術遠未達到成熟的程度;車艙內的智能化體驗也還有豐富的想像空間。
換言之,如果跨界選手想要在智能汽車的世界裡找到自己的一席之地,不僅要高度重視安全這一話題,還要擁有強大的軟體能力。
但在前一輪前沿傳統主機廠以及蔚來、小鵬、理想等新造車勢力的人才軍備賽過後,新入局的玩家要如何吸納更多的專業人才?又如何權衡來自世界各地的人才的意見和建議,從而做出最終決策?
與此同時,智能汽車的研發不是一件只要懂軟體就能夠做成功的事情。
隨著電動化、智能化大潮的到來,造車的門檻看似降低了不少,但在這一過程中遇到的內因外因的難題,可能遠比想像中的要多。
行業資源尚需積累。
相比AI安防、智慧城市等領域,AI視覺跨界者在智能汽車領域品牌影響力和渠道資源不足,短期內,造血盈利能力較低。
而且,AI視覺企業布局智能駕駛時間不一,技術雖有共性但終究有別,相較於大多數垂直企業,尚有諸多不足。
故可見,過去幾年,即使AI視覺巨頭,步伐也較為謹慎,大多圍繞艙內智能、ADAS市場。
如果說巨頭們跨界,自帶熱搜體質,AI視覺企業跨界的光彩,多少暗淡了些。
前者身家優渥,拿著頂流體驗卡入場,高屋建瓴,後者更多是以小舟,涉鯨波。
當然,隨著技術日進一桿,資源聚沙成塔,營收逐年增長,他們將投入包括但不限於研發、營銷、資本等層面,難保這一葉扁舟,哪天出其不意成為可遠航的重磅郵輪。
莫道桑榆晚
眾多跨界玩家湧入智能汽車,激發了新的生機。
無論從何種角度來看,智能汽車的市場都蘊藏著無限機遇。
這個市場需要鲶魚的存在。
在新時代的風潮之下,我們固然期待看到不斷有實力強勁的新玩家們入局,留下中國智能汽車史上濃墨重彩的一筆。
我們也殷切地希望,這是一片能夠承載百花齊放,充滿新的生機和活力的沃土,而不是拔苗助長的投機者的港灣。
憑藉先發優勢,不少入局者或已暫列行業前位,但隨著各方力量的持續加碼,後來居上也並非不無可能。
保持警惕,時刻成長。
資料來源:https://www.chinahot.org/science/83632.html?fbclid=IwAR2Mm9ZU17srF7sCywqUPw-hmRAyGN_sN9XnL0_Q6mE4bUYwUpgGNX3wHps
視覺區辨定義 在 台灣物聯網實驗室 IOT Labs Facebook 的最讚貼文
邊緣AI 2026將成 IoT晶片發展核心
04:102021/05/02 工商時報 集邦科技資深分析師曾伯楷
隨著智慧工廠、城市等場景對數據分析越發需要精準、即時且大量處理的需求,AI與IoT結合已是現在進行式。在AI晶片助益下,IoT邊緣與終端裝置可透過機器學習或深度學習等技術加值,同時帶出無延遲、低成本、高隱私等優勢,顯示出AI晶片的重要性。預估全球AI晶片產值至2025年將達720億美元。
與此同時,邊緣運算透過AI使終端設備於運行上更加智慧,不僅保有邊緣運算於延遲性、隱私性、連接性、功耗、成本等優勢,並進一步使系統具有主動性與智慧性。若以場景角度切入,邊緣AI相較傳統邊緣運算,其主要帶來的效益包括數據處理過濾和邊緣智慧分析,此也將成為兩技術持續結合的動能。
一、MCU、連接晶片、AI晶片為IoT晶片產業鏈三大關鍵零組件。 物聯網在傳統上多以感知層、網路層、系統層與應用層作為架構堆疊,主要經濟效益雖來自應用層的智慧情境發展,然感知層所需的產業鏈之上游零組件仍是支撐終端場景運作重要核心,其中又以微控制器(MCU)、連接晶片與AI晶片最關鍵。
MCU方面,建立在高效能、低功耗與高整合發展主軸下,IoT MCU現行從通用MCU演化成特定為IoT應用或場景所打造,如2021年3月STMicroelectronics推出新一代超低功耗微控制器STM32U5系列,可用於穿戴裝置與個人醫療設備;Silicon Labs同期推出PG22 32位元MCU,主打空間受限且須低功耗的工業應用、Renesas RA4M2 MCU著眼IoT邊緣運用等。
連接晶片方面,受物聯網設備連線技術與標準各異影響,通訊成物聯網晶片中相當重要的一環,從蜂巢式的4G、5G、LTE-M、NB-IoT,到非蜂巢式的LoRa、Sigfox、Wi-Fi、Wi-SUN等,從智慧城市、工廠、家庭至零售店面皆被廣泛運用,範圍擴及至太空,如2020年下旬聯發科與國際航海衛星通訊公司(Inmarsat)合作,成功以NB-IoT晶片完成全球首次5G物聯網高軌衛星資料傳輸測試。AI晶片方面,隨著智慧工廠、城市等場景對數據分析越發需要精準、即時且大量處理的需求,AI與IoT結合已是現在進行式。此外,Microsoft在其2021年3月舉辦的年度技術盛會Ignite 2021上指出,2022年邊緣運算市場規模將達到67.2億美元,與深度學習晶片市場相當吻合,亦提及市場預估至2025年全球深度學習晶片市場將有望達663億美元。同時,Microsoft認為至2026年全球AI晶片有3/4將為邊緣運算所用,顯示出IoT晶片於邊緣運算的發展將成未來廠商重要布局之一。
二、邊緣AI效益顯著,成長動能仰賴數據處理過濾、邊緣智慧分析。
首先,從邊緣運算定義來看,市場雖已談論數年但定義與類別始終未統一,原因是各廠商於邊緣託管工作的目的不盡相同。例如對電信商而言,初步處理數據的微型數據中心是其邊緣端,而對製造商來說邊緣裝置可能是生產線的感測器,此也造就邊緣運算的分類方式略有出入。另外,例如IBM有雲端邊緣、IoT邊緣與行動邊緣的類別,ARM多將邊緣視為雲端與終端間的伺服器等裝置,亦有個人邊緣、業務邊緣、多雲邊緣等類型。
其次,從邊緣運算類別來看,現行分類趨勢和研究方式尚有以數據產生源為核心,藉由設備與數據源的物理距離作為分類參考,並將其分為厚邊緣(Thick Edge)、薄邊緣(Thin Edge)與微邊緣(Micro Edge)。厚邊緣多用以表示處理高數據流量的計算資源,並配有高階CPU、GPU等,例如數據中心的數據儲存與分析;薄邊緣則包含網路設備、工業電腦等以整合數據為主要目的,除了配有中間處理器外,也不乏GPU、ASIC等AI晶片;微邊源因與數據源幾無距離,故常被歸類為生成數據的設備或感測器,計算資源雖較為匱乏,但也可因AI晶片發揮更大效益。
整體而言,邊緣運算透過AI使終端設備於運行上更加智慧,不僅保有邊緣運算於延遲性、隱私性、連接性、功耗、成本等優勢,並進一步使系統具有主動性與智慧性,在平台管理、工作量合併與分布式應用也更有彈性。若以場景角度切入,邊緣AI相較傳統邊緣運算,其主要帶來的效益提升包括數據處理過濾和邊緣智慧分析,此也將成為兩技術持續結合的動能。
數據處理與邊緣分析於過往邊緣運算時已可做到,並在AI加值下進一步提升效益。以前者而言,數據透過智慧邊緣計算資源可在邊緣處預先處理數據,且僅將相關資訊發送至雲端,從而減少數據傳輸和儲存成本;從邊緣分析效能來看,過往多數邊緣運算資源處理能力有限,運行功能時往往較為單一,而邊緣智慧分析透過AI晶片賦能,進而能執行更為繁複、低延遲與高數據吞吐量的作業。
三、全球大廠搶攻IoT晶片市場,中國加重AI晶片發展力道。
IoT晶片於邊緣運算所產生的效益,使其成為廠商重要策略布局領域,雲端大廠如Google、AWS等紛紛投身晶片自製;傳統晶片大廠如ARM最新產品即鎖定邊緣AI於攝影機和火車的辨識應用、Intel亦投資1.3億美元於十餘家新創AI晶片設計廠商,NXP Semiconductors、Silicon Labs、ST則陸續在其MCU或SoC添加邊緣AI功能。此外,新創企業Halio、EdgeQ、Graphcore皆以AI晶片為主打。整體而言,若以區域來看,歐美大廠聚焦加速AI運算效能,但最積極發展AI晶片產業的則屬產官學三方皆支持的?心,代表性廠商包含地平線、華為旗下海思等代表;台灣則由產業聯盟領頭與聯發科和耐能等重要廠商。
(一)中國產官學助力,2023年AI晶片產值估將逼近35億美元。
AI產業是中國發展重點之一,其輔助政策如2017年《新一代人工智能發展規劃》、《2019年促進人工智能和實體經濟深度融合》,至「十四五」與「新基建」,都將AI視為未來關鍵國家競爭力。各大廠也因此陸續跟進,如百度發布AI新基建版圖著眼智慧雲伺服器;阿里宣布未來至2023年將圍繞作業系統、晶片、網路等研發和建設,騰訊則聚焦區塊鏈、超算中心等領域。
產官學研加重AI的發展力道也反映於AI晶片上,ASIC(特殊應用基體電路)廠商比比皆是。其中,AI晶片布局物聯網領域的廠商眾多,包含瑞芯微、雲天勵飛、平頭哥半導體、全志科技等,主要面向雲端運算、行動通訊、物聯網與自動駕駛四大領域。其中,物聯網領域進一步聚焦於智慧家庭、智慧交通、智慧零售與智慧安防部分,執行語音、圖像、人臉與行為辨識等應用。若進一步聚焦於邊緣運算領域,則以地平線、寒武紀、華為海思、比特大陸、鯤雲科技等最為積極。整體而言,TrendForce預估,中國AI晶片市場有望從2019年13億美元增長至2023年近35億美元。
綜觀中國AI晶片發展,雖有中美貿易摩擦導致設計工具、製造封測等環節較受限制,且開發成本始終居高不下,然而,藉由產官合作以及中國內需市場需求動能,仍能有效支撐該產業成長。若以邊緣運算來看,鑒於AIoT市場持續茁壯,特定應用的ASIC將是重要發展趨勢,尤以汽車、城市與製造業來看,相關場景應用如人身語音行為辨識、人車流量辨識、機器視覺等需求皆相當明朗,預期也將成廠商中長期發展主軸。
(二)台灣人工智慧晶片聯盟積極整合,監控與機器人為邊緣AI應用兩大方向。
台灣廠商聯發科和耐能同樣結合邊緣運算與AI兩技術作策略布局,就整體產業而言,2019年由聯發科、聯詠、聯電、日月光、華碩、研揚等廠商共同組成的台灣人工智慧晶片聯盟(AITA)發展迄今已越趨成形,各關鍵技術委員會(SIG)亦訂定短中長期發展目標。
邊緣AI發展則由AI系統應用SIG推動,其第一階段至2020年著眼半通用AI晶片發展與智慧監控系統應用平台的裝置端推論,2021年則聚焦以裝置端學習系統參考設計,以及軟硬體發展平台的裝置端學習為主,並規劃在2023年能以多功能機器人為主體,發展多感知人工智慧和智慧機器人AI晶片發展平台。
換言之,藉由業界在智慧裝置、系統應用與AI晶片的串聯,短期至2022年都將是台灣邊緣AI大力發展階段,並朝智慧監控、多功能機器人深化,預期此也將帶動系統整合的凌群、博遠,終端設備的奇偶、晶睿碩,以及晶片設計的聯發科、瑞昱等邊緣AI商機;但相較中國廣大內需市場,台灣仍需藉由打造讓晶片廠和系統商充分整合的互補平台,以利降低晶片開發成本,並從其中尋求更多可供切入的大廠產業鏈。
附圖:2019~2023年中國AI晶片市場推估
AI於IOT流程主要著眼數據處理與分析之效
台灣人工智慧晶片聯盟系統應用SIG發展架構
資料來源:https://www.chinatimes.com/newspapers/20210502000153-260511?fbclid=IwAR0zlvUv8MKpcHrbgpa3xRAFaQXaxZuep9TCeZ-75myILNjuDV4SWEIdKZ8&chdtv
視覺區辨定義 在 啟點文化 Youtube 的最佳貼文
【線上課程】《人際斷捨離》~
讓你留下怦然心動的關係,活出輕盈自在的人生!
課程連結:https://pse.is/E5MW5
第一講免費試聽:https://youtu.be/YyLvd1cNcDw
不定期推出補充教材,讓學習無限延伸:https://pse.is/LVRLY
【7/4 開課!】《學「問」~高難度對話的望聞問切》~第19期
掌握達成共識的關鍵能力!
課程資訊:http://www.koob.com.tw/contents/232
更多學員心得分享:http://goo.gl/A07zZ0
【線上課程】《理財心裡學》~擺脫家庭影響,從心培養富體質
課程連結:https://pse.is/EPBWE
第一講免費試聽:https://youtu.be/HgrDK7pqR-0
不定期推出補充教材,讓學習無限延伸:https://pse.is/NJ5VE
【隱喻工作坊】認識自己的獨特,與潛意識做朋友~2020/05/23 開課
課程資訊:https://www.koob.com.tw/contents/4165
【線上課程】《過好人生學》~讓你建立迎向未來的思維與能力!
課程連結:https://pse.is/H8JXH
第一講免費試聽:https://youtu.be/-EHOn0UxMys
不定期推出補充教材,讓學習無限延伸:https://pros.is/KQZZH
【線上課程】《時間駕訓班》~
學會提升效率,擺脫瞎忙人生,做自己時間的主人
課程連結:https://pse.is/DDDHB
第一講免費試聽:https://youtu.be/flfm52T6lE8
不定期推出補充教材,讓學習無限延伸:https://pse.is/GXZWM
【我們有Podcast囉~】歡迎到Apple或Android內建的Podcast搜尋「啟點文化一天聽一點」訂閱我們!另外,在Spotify和Soundon也找得到喔!
Apple Podcast~https://pse.is/N2WCZ
Google Podcast~https://pse.is/PEN2Z
在Spotify收聽~https://pse.is/PQT76
在SoundCloud收聽~https://soundcloud.com/ekoob
歡迎加入「啟點文化 X Telegram 」:https://t.me/turnkeysolution
線上課程【不用開口,就讓你擁有人際好感】
啟動人際溝通的關鍵影響力 https://goo.gl/v3ojdo
桌遊【人際維基】~一玩就懂得別人的在乎:https://goo.gl/Ej4hjQ
到蝦皮購買【人際維基】:https://goo.gl/ASruqR
=======================
以下為本段內容文稿:
最近呢,因為我們推出了【人際斷捨離】這門課的季節限定優惠,所以很多朋友就趁這個機會加入了學習。
然而對我們的老學員而言哦,也因為近期的「一天聽一點」都在談相關的主題,所以很多人都跟我說,再給他們一個很重要的提醒;那就是凡是學過的東西,溫習蠻重要的!
讓他們回去再次溫習【人際斷捨離】的時候,他們都告訴我,其實讓他們想到的,不只是關係上面的議題,更是一種全面的、人生的自我價值的重新定位。
怎麼說呢?我們的老學員常告訴我,其實有時候,那些人就是長在我們的生命裡,而且呢,一時半刻你也沒有辦法做到真正的切割。
但至少在心理上,我們可以拉出一段距離;我們可以讓自己相信自己的價值,並不是建立在他人,或他人的反應,更不是建立在他人的嘴巴裡。
我每次聽到這樣的分享回饋,我都覺得很感動,因為這正是我們推出【人際斷捨離】這門課,一個很重要的目的。
它並不是要你跟任何人切八段,因為呢,有很多關係,你是沒有辦法真正的切八段;反過來說真正的你要去做到切八段,它一定是比較健康的嗎?
反而我們應該要的態度,就像是面對陽光一樣,如果陽光真的太大,至少我們要做到防曬,至少我們要做到戴上太陽眼鏡;而不是一直討論怎麼樣把太陽消滅。
你想想看,當太陽被消滅了,那請問對地球來說是好事還是壞事呢?
其實有很多關係都像是這樣的存在,它會有讓你辛苦的部分,可是它也有存在的必要性;在這個過程裡面,我們怎麼樣去調整自己的位置,尤其是找到自己的價值跟定位,這就是關鍵中的關鍵了!
然而談到價值跟定位啊,其實它還蠻呼應,我最近在一個網站,叫做「換日線」這個網站上面,看到的一篇專欄文章,我個人非常有感哦!
這個專欄文章的標題,叫做「你是筆電還是筆電包?」,副標題是「不依附他人,當自己人生的主角」。
其實呢,回顧我自己使用電腦的經驗,除了我人生當中第1台286的桌機之外,那如果比較年輕的朋友,你大概不知道286指的是什麼,那自己去查吧!我也不想要多解釋,因為解釋多傷心,好像我很老一樣。
除了那一台286的電腦之外,我從那之後所有的每一台電腦,都是筆記型電腦,那你只要有跟我同樣的經驗就會知道,其實筆記型電腦,它的設計就是為了我們攜帶方便,可是它畢竟是3C產品。
所以呢,它在移動的過程當中的保護,也是非常重要的一件事,所以伴隨著筆電這樣的產品,它應運而生的周邊商品,就是筆電包。
那這一篇文章呢,就用這樣的隱喻來引導我們去思考,我們到底是那台筆電還是筆電包?
只要你有用筆電,你可能都會買一個保護它的筆電包,筆電包有些是功能導向,有些是視覺系導向的哦,可是呢,隨著科技的進步,現在的筆電變得越來越輕薄。
像我自己使用的MAC的電腦,一台13寸的螢幕,這樣的電腦非常的輕,所以呢,它可以很容易的被塞進一般的。
不管是後背包啊、公事包啊,甚至於大一點的女性的那種手提包裡面,都可以放進去;而這些背包、公事包、手提包裡面都有很多的夾層,在夾層裡面都有軟墊可以保護筆電。
所以因為這樣子筆電包這個產品,就慢慢的被時代淘汰了,然而筆電包這個產品為什麼會被淘汰,是因為它的價值,其實是依附在別的產品上面,是依附在筆記型電腦上面。
所以你想想看筆電包的生產設計,它的大小厚度,其實都不是自己可以決定的;它只能跟著瞬息萬變的筆電市場走,一直到市場不再需要它,這讓你想到什麼,其實現在手機殼不也是這樣嗎?
可是呢,當你面對特別是面對自己,不管是職場價值,還是生命價值的時候,你究竟是筆電,還是筆電包呢?
在這篇文章裡面就點出,所謂當一個筆電包的意思,就是把自己的核心價值依附在另外一個個體上面,並且完全仰賴這個個體,然而當這個依附的個體改變,或者消失了,那麼它的價值也會從此消失!
比如說吧,在工作裡面,如果你只學用自己公司的某個特定的系統,那麼是不是到哪一天這個系統換了,或者是你換了一家公司,這個技能就完全沒有任何的價值。
可是如果你只會某個公司的某個專案的某個程序,那麼哪一天,這個專案改變了客戶消失了,你的專長也就會消失了!
這裡特別危險的就是,我們把自己的價值,依附在某個特定的範圍,某個特定的人,或者是某個特定的任務。
這樣子就會讓我們,沒有辦法去養成自己獨立思考的模式;甚至於是面對很多事物的應變準則,一直到哪一天整個環境變了,你的價值就會跟著被消滅。
所以你可以想想看,假設在你的生命裡面,你的所有的喜怒哀樂,你看待自己的價值是依賴他人。
比如說最典型的,就是很多人會把自己生命的價值,或隱或顯的建立在,他要證明給他的父母親看,或者她希望成為父母親心中的好孩子!
在這樣的狀況底下,其實你就很容易變成那個筆電包,這並不是父母親的錯;尤其是當你已經邁入了成年的階段,這裡面的關鍵在於第一個,父母親的期待,是你認為父母親對你有期待,還是你有真正跟他們核對過他們的期待?
而第二個,如果你真的核對過他們的期待,那麼你有沒有去區辨他們的期待,是建立在他們的時空背景,還是適合你此時此刻的時空背景?
而第三個,如果他們的期待,並不符合你現在的時代,或者是你的主客觀因素的要求,那麼你能不能在心裡去畫出一個界限、一個最起碼的界限,叫做什麼叫做「孝順」的定義?
孝順,並不是讓你活成一個不符合時宜的人,而且也不快樂的人;孝順是找到適合自己快樂的方法,並且交給時間,讓父母親感覺到你很認真的,而且很圓滿的,在自己的生命軌道裡面前進。
所以呢,在這裡哦你就發現了,我們要斷捨離的並不是斷捨離親子關係呀!而是要把心中那個把自己的價值,依附在他人的認定,或他人的標準,儘管那個他人是你的父母親。
你要把這個信念斷捨離掉,因為你如果沒有把它斷捨離掉,就算你百分之百的按照父母親的期待,去過你的日子,請問你會快樂嗎?
然而回到一個更原本的源頭,如果你一直不快樂下去,你的人生會活成什麼樣子?而你把自己的人生活得很辛苦、很糟糕,這時候對父母親的意義跟角度而言,這算孝順嗎?
孝順是要把自己搞慘,還是要把自己搞好呢?那更不要說很多人,在感情裡面的受傷跟挫折了!
你想想看,多少人談了感情之後就沒有自己,也就是說他因為進入一段感情,把自己所有的價值的認定,都依附在另外一個人,或者是另外一個人的喜怒哀樂上面。
再衍生來看,在教養的議題裡面,為什麼有很多的父母親,很認真的把自己全部的身心、精力都放在自己孩子身上,可是孩子跟他的關係,和孩子的表現,始終是讓他很傷心又挫折的?
你知道嗎?最大的問題不在於他們不夠用心,在於他們太用心,他們用心到他們的生命裡只剩下孩子,而沒有他自己!
所以我們常說小孩的成長是透過模仿而來的,他們見證了自己的父母親,活出一個沒有自己的生命,那麼在這樣的狀況底下只會衍生出兩種結果,一種結果就是它全然的模仿父母親。
再不然另外一個結果就是,他對父母親這樣的行為產生了很大的叛逆,然而不管是這兩個極端的哪一個極端,我相信親子關係遲早會出問題的。
所以呢,我們回身來看,你在面對自己人生當中,不管是關係還是生涯的哪一個層面哪一個議題,其實真正需要斷捨離的,並不是誰或者是哪個環境,哪個工作,而是你要先從斷捨離自己心中的「信念」!
什麼樣的信念呢?就是把自己的價值建立在他人、他者;甚至於是別人說的話,你的價值並不是這樣子被建立的,想一想,你要當筆電,還是要當筆電包呢?
或許你要讓自己變成是一個獨立自主,像筆電般的存在,那麼第一步,你可以開始學會跟那些傷害自己的信念,進行斷捨離的工作。
而我們推出的【人際斷捨離】這一門線上課程,會帶給你很大的幫助,希望你能夠趁著季節限定的優惠,跟我們一起學習,一起前進。
也希望今天的分享,能夠帶給你一些啓發與幫助,我是凱宇。
如果你喜歡我製作的內容,請記得訂閱我們的頻道,YouTube的朋友除了訂閱之外,記得打開小鈴鐺,而Podcast收聽的朋友,除了訂閱我們之外,記得給我們5顆星的評價,我們需要你用最具體的行為來支持我們。
然而如果你對於啟點文化的商品,或課程有興趣的話,我們在每一段影片的說明裡,都有相關的連結。
尤其是我們的【人際斷捨離】季節限定的優惠,即將在3月13號的晚上12點就結束了,所以如果你還沒有加入的話,請務必把握這難得的機會!
期盼跟你一起學習,一起前進;那麼今天就跟你聊這邊了,謝謝你的收聽,我們再會。
視覺區辨定義 在 偽學術 Youtube 的精選貼文
[旅行的旅行] 行動傳播技術空間中的旅行:#當我們用GoogleMap找路時 / 李長潔 🚎
.
時常有人問我,你每次去日本的那些超級冷門的風景、傳說地點、氛圍氣喫茶老店,到底怎麼找到的,聽都沒聽過這些地方。剛開始,我會查詢中文與外文的旅行資訊,像是旅遊手冊、觀光網站,都是基本工作,可以給旅客一點基本的地理想像,如方位、氣候、規模、人文特色等。接著,我會做一件事—大量地運用google map細查地方資料。
.
地圖,是一種人對空間權力的掌握,當旅人們從地圖繪製者的手中,搶回擁有地圖的權力,這將如何改變我們的旅行生活?然而,我們真正因為google map而搶回了對空間的掌握嗎?我們先從紙本地圖的使用開始。
.
▓ #紙本地圖的時代
.
不只是到了旅遊的當下才使用google地圖來找路,而是平常沒事時,就打開地圖滑呀滑,細察預計拜訪的地點,了解地理資訊。不過,在2005年以前,旅行時掌握地理環境的技術大都依賴紙本地圖,旅客與觀光客在出發前,會購買旅遊手冊、旅行文學,透過特定旅行專家與旅遊資訊編輯的視野,來觀看地方(林子廉,2009)。在那時之前,各種「旅遊天書」隨著出國人數的增加,而銷售量大增。
.
出國旅行度假,不單僅是選好地方、買張機票、然後去就可以說「#這是我的旅行」,旅行的體驗是由生活中的不同媒介內容(電視、廣告、電影、書籍、旅遊手冊,現在還有社群網站)與你的真實旅程所交織而成(Urry, 2002)。當然也包含地圖。
.
地圖是一種地理狀態的再現。我們覺得地圖模擬了真實的環境樣貌,但事實上,地圖是一種「#簡化」、「#挑選」、「#裁切」,尤其是紙本地圖,在有限的平面版面上,地圖的終極目標並不是一比一的還原,而是透過地圖繪製與資料整理,表現製圖者對大地的擁有權、解釋權。
.
在從前的旅行中,我會在行前買一份巴黎的城市地圖,在台灣時就把旅行手冊上看到的景點標示在地圖中;並在旅程中逐一刪除,有時候還會用紅筆將散步走過的路徑畫上,以展示我對巴黎的熟稔程度。基本上,整張巴黎地圖我都畫滿了。
.
▓ #google地圖的出現
.
2005年,Google Map正式上線,一開始只是電腦版,同一年裡很快地推出手機版本,並且加入Google Earth的服務,直至今日,google的地圖是Google公司流量第二大的營運項目。Google Map運用了地理資訊系統(GIS),整合地表空間幾何特性以及地理屬性等兩種資訊之資料庫, GIS 中記錄的資料藉由適當的軟體解譯後可重現地表相關地形與地貌,使用者可以免費且自由地在地圖檔上標記並添加註記。這個地圖很快地成為旅行者的最佳找路工具,可以用微觀與巨觀的視野,審視空間樣態(廖酉鎮、陳均伊,2013)。
.
相對於傳統紙本繪製,#地理資訊系統(Geographic Information System,GIS)的廣泛應用,省卻了實物儲存的難處,也使我們可以在同一空間的地圖上看到不同的主題的重叠和互動,我們更能按照我們的想法,在給定的地圖框架上任意標籤,製作對我們有意義的地圖(Lo, 2012)。
.
Google不斷推出越來越豪華的地圖服務,像是「#交通資訊」、「#街景服務」、「#旅行規劃」,最近更加入虛擬實境的概念,將導航升級成「#AR導航」,透過 GPS 獲取用戶的位置,並使用街景資料產生「視覺定位系統」(Visual Positioning System,VPS),快速辨識周遭地標建築定位用戶位置,並在手機相機中以巨大的動畫箭頭結合街景,藉以更清楚地告知方向。這些方便的工具是積累在行動通訊技術、運算技術與人群使用習慣的大量應用與快速進步上,嶄新的地圖技術深刻地改變了旅行、旅人與城市的互動關係。
.
▓ #人與機器結合下的旅行:地理媒介
.
人與機器在移動技術空間中,被結合成一種人機複合體,或是Bruno Latour行動網絡理論中的「人—物」,這讓人的體驗更加複雜。你有沒有一種經驗,就是打開Google Map後,隨著指標轉動身體,試圖協調數位與真實的空間方向。或是,跟著導航行走,耳畔響起「向左轉」,就毫不猶豫地走向左方的街道。又或是,最一般的情況下,使用者會打開軟體,了解地理定位下自己與週邊資訊(店家、車站等)的關係。
.
進入到隨身行動傳播科技時代,人與物結合下的移動與定位本身就是一種資訊,這些資訊詮釋了流動空間、網絡連結、移動過程的具體樣態。一方面,機器深刻地鑲嵌入人類的生活世界中,反過來說,人們亦透過機器產生全新、方便、延伸的特殊經驗。這種人機合一、日常鑲嵌的 #地理媒介(geomedia)(McQuire、潘霽,2019),在旅行實踐中更顯鮮明。
.
在Web2.0時代,藉由地理媒介所構連起來的網絡式公共空間,展示了人類時空感知的嶄新轉變。透過行動傳播與數位化的技術,遊歷的地點本身不只是被媒介再現,而是,這些地點本身就是媒介,在程式運算的框架下,人與人、人與城市有了全新的關係:Google Map的使用與資料的積累,很大的程度上,人們利用社會實踐、消費行為與協商互動來定義旅行的地方。
.
例如這次我們旅行到關東地區,特地前往宇都宮吃餃子。在行前我們藉由Google Map的即時資訊決定乘車的方式,查詢車站附近所有的餃子店以及他的評價、照片、菜單,用街景服務來定位自己如何到達要去的「餃天堂」。然後在這家算是有特色的餃子店鋪,我們竟然在餃子裡吃到了一根鋼刷鐵絲,店家也沒有很認真地看待。就默默地打開Google Map說明了當下的狀況,並給予較低的星級。
.
▓ #自願式的地理資訊(volunteered geographic information)
.
上述的情境是一種建構主義的場境,使用者們可能自知的情況下,#自願參與地理資訊的建構,這稱做自願式的地理資訊(VGI,volunteered geographic information)(Sieber and Haklay, 2015),Google Map的VGI使得人們更有機會參與城市意義的詮釋,在公共參與的意義上,Google Map也是一種社群媒體,它建築在遊客、居民、店家等大量用戶的傳播意向性上。在McQuire與潘霽(2019)的「地理媒介」評斷便提到中,媒介傳播技術、隨身行動和城市地理元素的深度融合,共同造就了「#成為公共」(becoming public)的體驗,打開城市生活的審美維度,同時推動了「成為公共」的過程。城市中的社會關係和權力關係,不再僅僅依據根植於城市空間結構的生活形態,而是更直接地被轉化為主動的「傳播」過程。
.
從知識論的角度來看,Google Map有著三種資訊類型:自然的資訊、技術的資訊與文化的資訊。自然的資訊,如同人們所可以感受到的地形等;技術的資訊則如道路、水系的測量描述;而文化的資訊則指涉各種人類的行為,如駕駛、消費等。透過運算平台,當然也包含IG、FB上的「#社會標註」,像是打卡、分享美照、「#」,使用者、物、與城市風景大量交織成數位形式與真實形式共存的存在,並且在公共性的概念下交往互動。
.
可是,我們還是可以想像與批判,一個反烏托邦正在進行。有時候我們不知道自己正是地理媒介的延伸,甚至不得不參與地理資訊的建立。當你想要運用導航系統時,其使用者本身正參與著車流量預測的演算過程。當我們行動時,我們也正經歷一種數據式的物化,個人與機器結合後,個人在時空中的所有作為都有可能面臨資本主義的收編,例如在Google Map上顯示個人化的位置性商業廣告。
.
▓ #流動的社群與信任革命
.
旅行者們對Google Map的使用,構成了一種流動與移動的社群,這個社群強調的並非穩定的社會記憶,他們更欣賞獲得片刻的超凡體驗,與享受如遊戲般的過程,在虛實間讓自己更能夠掌握旅行的地方。從Google Map的旅遊嚮導設計就可以發現,Google Map將每一位參與地理資料建構的人們都當作「專家」,這個構想在另一個旅行APP「#TripAdvisor」裡也非常鮮明。你可以在「TripAdvisor」裡分享更多評價、文章與圖片,分享你在移動時的超凡體驗,以獲得「#頂尖攝影師」、「#飯店達人」等等標章,以提高個人體驗的可信度。
.
不過,有批評家認為,我們太容易把Google Map、Google Earth上的作為,理解為一種全景全知的圖像、透明的秩序,甚至是前面討論的參與和賦權的工具(Kingsbury & Jones, 2009)。閃耀著令人暈眩光茫的球體,反映了人類的戴奧尼索斯的妄想,我們狂亂地航行,歡天喜地地喧囂,我們全心全意、不加思索地信任它,卻低估了虛擬世界對真實世界的集體監控。
.
▓ #回歸地方化?
.
不過,站在創用的立場,我還是傾向對科技保持信任。信任研究者Bostman(2017)在《#信任革命》中談到,只有「信任」,人類才能在進程上有超越性的變革。當然,對Google Map的信任早在2010年以後就幾乎被廣大的使用者們接受了,雖然偶而還是會看到我父親打開地圖導航後,然後罵導航太笨,繼續走自己的路。但無疑得,Google Map扮演了旅行實踐的重要推動角色,它把商品、交通、約會與各種推薦搓合起來,讓旅行同時是個人的行動,也是集體的社群參與。也因為這些更加錯綜複雜的信任,旅人們才能獲得更多足以創新生活的服務。
.
回到McQuire的地理媒介概念中,如果傳統大眾媒體帶給旅行者與地方的是一種想像的、再現的、去地方化的全球化幻覺。那麼這些隨身、隨地的地理媒介,像是Google Map,則在旅行者與地方之間形成更回歸地方化的關係,同時還包含了跨文化溝通的實現,透過這樣的地理媒介技術,更能提高人們對差異性與流動性的接受程度,還可以確保城市網絡中與他者共存的技能。
_
_
#參考文獻:
.
1. 林子廉(2009)。旅遊手冊如何影響遺產觀光客對於原住民石柱真實性知覺、旅遊動機及體驗。文化大學觀光系碩士論文。
2. Urry, J. (2002). The tourist gaze. Sage.
3. 廖酉鎮, & 陳均伊. (2013). 讓地圖活過來一 Google Earth 運用於地球科學教學設計之應用. 科學教育月刊.
4. LO, K. H. (2012). 論班雅明式史觀和空間觀: 並以領匯霸權地圖為例. Cultural Studies@ Lingnan 文化研究@ 嶺南, 32(1), 1.
5. Sieber, R. E., & Haklay, M. (2015). The epistemology (s) of volunteered geographic information: a critique. Geo: Geography and Environment, 2(2), 122-136.
6. McQuire, S., 潘霽(2019)。From Media City to Geomedia: Cross-disciplinary Insights into Information Society from a Pioneering Australian Scholar。資訊社會學研究,36。
7. Botsman, R. (2017). Who Can You Trust?: How Technology Brought Us Together–and Why It Could Drive Us Apart. Penguin UK.
8. Kingsbury, P., & Jones III, J. P. (2009). Walter Benjamin’s dionysian adventures on Google Earth. Geoforum, 40(4), 502-513.
視覺區辨定義 在 蔡依林 Jolin Tsai Youtube 的精選貼文
👉正式版 MV : https://youtu.be/-wIHmPAvMBo
♬ 數位收聽 : https://jolin.lnk.to/UglyBeauty
♬ 訂閱蔡依林頻道 : https://sonymusic.pse.is/jolin
見怪不怪 美不勝收
年度壓軸 20年能量爆發!
亞洲流行天后 蔡依林 JOLIN最新專輯 UGLY BEAUTY
打破世俗標準的審美觀
包容大千世界的惡與善
2018.12.26 全球怪美發行
#蔡依林 #蔡依林新專輯UglyBeauty #UglyBeauty
最誠實的Jolin ! 「曾覺得沒有做到100分的自己什麼都不是」
最實驗的Jolin! 試驗多種不同曲風,忠於音樂的直覺,將自己打掉重練11首新歌
繼2014年「呸」《PLAY》掀起全球話題熱度並創華語流行音樂經典模範後,亞洲流行天后Jolin蔡依林睽違樂壇四年的新專輯《UGLY BEAUTY》將於12月壓軸登場!上一張專輯從自身觀點去探討社會上各種表面現象,這次新作品回歸內心層面,Jolin從不斷地自問自答、自我探索內心的過程中,發現到正視並擁抱自己的陰暗醜陋面,得到的反饋是美好的! Jolin透過主題《UGLY BEAUTY》的「情緒」與「慾望」探討人類的「感」「觀」,打破世俗對於美與醜的二分法並重新定義!
這兩年對心理學有興趣的Jolin,透過心理學大師榮格的書,開始挖掘內心世界及探索自己,Jolin表示:「以前是沒有做到一百分,我就會很自責,我覺得我是一個不值得一提的人。」而這個摸索過程卻意外發現到曾經那個總想要考一百分、證明自己「我可以」的Jolin,一直忽視內在陰性的力量而忘記如何好好愛自己;透過這樣的挖掘過程,於是聯想到《UGLY BEAUTY》主題為新專輯催生,Jolin表示:「對我來說面對自己UGLY的一面就是情緒的一環,當你開始面對它之後,獲得的反饋是很美好的、更多的愛與同理心,你會很了解你自己當初作這件事情的決定,就不太容易去批判自己及批判別人!」新專輯的誕生過程Jolin透過不斷的探討、認識自己,專輯製作過程歷經多次的「打掉重練」,新專輯完整紀錄、呈現Jolin這段「認識自己」的旅程「感」「觀」,也將會是Jolin歌唱生涯中最「誠實」的一張專輯!
為什麼專輯取名為[UGLY BEAUTY]? 所謂的UGLY BEAUTY,其實指的不單是外表的美與醜,更多是想表達內在心理層面的兩極:善與惡/好與壞/哭與笑/開心與難過/黑暗與光明/脆弱跟強壯/正確跟不正確....,而所謂的惡,指的則是那些常常我們自己嫌惡的情緒特質:嫉妒、憤怒、自卑、脆弱、慾求不滿等等,因為知道他們不符合理想的審美,所以收在內心陰暗的房間裡不去正視它,但因為長期故意忽視他們,他們總會以各式各樣不同的樣貌出來犯案,於是有自殘、莫名的沮喪、消極、攻擊性、生氣、自負、欺負、鄙視別人等等,JOLIN想要表達的是:只有打開心房,去認識自己內在的陰暗面,能夠辨識出他們,當他們幻化成各式各樣不同的樣貌在日常生活出現時,你才能夠指認出來他們的原型,就會慢慢有能力不被這些負面力量所吞噬並學習跟他們相處、理解他們的樣貌及必要性。而關於同理心,就是明白這些所謂惡的樣式,下一次若是你在別人身上看到他們發作,你能理解並同理對方,也許就比較不容易受到傷害!
最多創作的Jolin! 親自泡錄音室參與創作
4年製作從台北 到曼谷 遠征斯德哥爾摩
Jolin打破過去專輯製作的收歌方式,以全新的創作模式自組音樂寫作營,親自參與音樂人集體創作的方式,完成新專輯《UGLY BEAUTY》的歌曲。 Jolin親自「泡」錄音室參與創作的集體創作,除了在台北還到曼谷,甚至遠征斯德哥爾摩,分別透過這幾個城市音樂寫作營的音樂人撞擊合作,動員近百位跨國音樂人,體驗到與不同地區的音樂人關在錄音室一周,一起腦力激盪的有趣過程,不但激發出Jolin自我潛能,更讓Jolin的創作力大爆發,新專輯一口氣參與了六首歌的創作作品。新專輯《UGLY BEAUTY》不僅將會聽到Jolin首次嘗試的創作模式,更將猶如大滿貫地聽到「創作力大爆發」及「最具Jolin 創作力」的一張專輯! Jolin表示:「自由的創作過程中,我探索出讓自己感動的聲音,而且跟不同的創作營合作,給我很大的推進力,一起做音樂討論、用不同的語言方式去表達你想要什麼,除了蠻過癮、蠻好玩之外,作品應該會讓大家聽了跟我一樣很有感覺!」
新專輯匯集來自世界各地音樂的創新作品,及主題《UGLY BEAUTY》多元化的探討內容,新專輯「實驗性」的成份、曲風不同以往,Jolin秉持「忠於音樂」的直覺,勢必將帶給華語流行樂壇更多的衝擊力、聽覺的新感官!勇於接受挑戰的Jolin表示:「我就是想試!」專輯製作過程中Jolin喜歡自問自答,也非常好奇、察覺女性力量及影響力,原本新專輯想探討「什麼是女人」,投入的過程中發現自己才是最佳的「實驗對象」,便開始一股腦地挖出內心世界的東西去探討,發現「情緒」正是影響自己及他人的關鍵點,因此常自問自答「自己是什麼樣的女人」;Jolin表示:「一直覺得我在女性這個角色少了一點東西,雖然大家看我外表像公主樣子,但我一直覺得內心是個男人!這樣的衝突點像是漩渦一樣,讓我不由自主地想要去研究。 」
預購造型「真理之口」 Ugly Beauty誰說了算?
時尚圈當紅攝影師Zhong Lin 新時代十大影響力造型師Yii
人格分裂打造11款怪美Jolin
配合新專輯十一首歌曲主題,特別邀請時尚圈當紅攝影師ZHONG LIN及曾經被Gucci點名合作、被全球時尚界評選為新時代十大影響力人物之一的名造型師yii,打造11套怪美風格的《UGLY BEAUTY》造型。首波公佈的預購視覺,Jolin戴上造型誇張的《真理之口》紅唇飾品、佐以雙手詭異的姿勢及雙眼無辜神情,讓整張海報的視覺非常具有衝擊性,也呼應這次專輯打破世俗美醜觀念的主題概念。
會選擇這一張照片主要是這一次專輯JOLIN想用各種[眼神]來和聽眾們對話,這也是她過去六年來的領悟,2012年拍[我]那支MV,她透過鏡子看著卸妝的自己,內心有流不完的淚,後來才了解她從來不愛惜自己,過去太在意別人說的話,做那麼多的事情只是想獲得別人的認同,但是現在的她,每一次照鏡子的時候都能從眼神中發現更愛自己,也提醒自己不要活在別人的嘴裡,嘴巴代表了很多言語,也代表很多說不出的話,但是現在的JOLIN想透過眼神的交流,告訴大家”我能理解妳們的心情! “ 這副吸晴的《真理之口》出自畢業於安特衛普皇家藝術學院的華人新秀設計師 Shuting Qiu所打造出的作品。搭配真理之口的搶眼橘色蛋糕裙,來自新銳設計師SENSEN LII 的作品,他不但是現任安特衛普皇家藝術學院的學生,也是今年紐約時裝週Winner of VFILES RUNWAY 10優勝者, Jolin挑戰連續兩天、超過24小時non stop的拍攝任務,在重視氛圍感及即興演出的攝影師ZHONG LIN的鏡頭要求下,短時間要穿梭在11個場景及11種角色設定中,Jolin表示: 「快人格分裂了,但演得很爽!」11款「怪」「美」的Jolin全新視覺,勢必將引起歌迷的騷動。
殿堂級全造型收錄 一萬本限量精裝版 4款封面200頁豪華寫真日記本
12/5全省7-ELEVEN開始預購
當了粉絲眼中四年的呸姊,這一次回歸華語樂壇,帶來全新的音樂作品[UGLY BEAUTY], 蔡依林似乎又再一次打破了自己的框架,試圖挑戰華語音樂過去很少碰觸的負面情緒以及惡之必要題材,JOLIN再一次透過音樂裡宣揚接受不一樣的自己,致力包容更多愛的模樣,更讓外界期待這一張新作品會帶給華語音樂多大的怪美效應!? JOLIN 最新專輯[UGLY BEAUTY] 怪美精裝版12/5將於全省7-ELEVEN及各唱片通路開始預購,限量一萬套的專輯精裝版共有4種顏色不同封面隨機出貨,大手筆的採用豪華布製外盒包裝,內附贈「殿堂級」200頁的精裝寫真日記本。不惜成本的包裝印刷想讓歌迷「聲」、「色」雙感官都能感受從音樂到視覺的用心。喜歡寫日記的Jolin也期待傳達給歌迷「分享內心」的概念,期待歌迷在這日記本記錄下屬於自己的秘密、關於《UGLY BEAUTY》的感觀&故事!
視覺區辨定義 在 認知功能輕微缺損國小學童視覺動作統整能力之研究 的必吃
本節內容主要包含認知功能輕微缺損學童定義與成因、認知功能輕 ... 覺注意力(Visual Attention)、視覺記憶力(Visual Memory)與視覺區辨. ... <看更多>
視覺區辨定義 在 視覺區辨 的必吃
視覺區辨 是一個分辨影像或物件細節的能力,例如兩者相似及不同之處,包括它們的形狀、大小、顏色等。這個能力由嬰兒時期已經開始建立,而且在學前時期,接觸多了文字、家長 ... ... <看更多>