MLOps 是 ML 與 DevOps 的結合,指的是從 AI 模型訓練到上線的一套完整 ML 工作流。若要成為專業的 MLOps 工程師,需要具備怎樣的技能?
同時也有4部Youtube影片,追蹤數超過5,870的網紅珊蒂微AI,也在其Youtube影片中提到,🍿在這支影片當中,觀眾朋友的提問如下,李老師都一一耐心回答惹(as always😊) 1. 機器可以回答哲學性的問題嗎?👉影片中,老師告訴你一個好玩的網站! 2. 神經網路架構的選擇方針?👉老師給出三個思考方向! 3. 老師有沒有Twitter? 👉影片揭曉! 4. 對機器學習領域未來發展趨勢的看法...
ai模型訓練 在 Facebook 的最讚貼文
創新工場和BCG咨詢合作的「+AI改造者」系列: 看看多面手鎂伽如何由點到面,用機器人和自動化賦能生命科學、製造和零售業。
改造者系列:將核酸檢測提效40倍的自動化變革推手 -- 本文来自BCG微信公眾號,經授權轉載。
近期,創新工場聯合BCG波士頓咨詢旗下亨德森智庫,推出「AI融合產業:『改造者』如何促進AI普惠」系列研究。人工智能在大陸有著明確的落地應用場景,大量的AI企業活躍於這些垂直場景中,我們定義這些企業為「改造者」。「改造者」通過傳授其AI技術和垂直行業理解,極大地打破了傳統企業應用AI的瓶頸。
作為擅於趨勢前瞻的TechVC,創新工場長期看好AI領域,深入佈局,至今已經投出了7隻AI獨角獸。在系列研究中,我們采訪了數家創新系AI企業,通過這些「改造者」的視角,探究傳統企業擁抱AI的範式與路徑。
創新工場投資的鎂伽是大陸領先的高科技公司,成立於2016年,專注于機器人和人工智能技術的研發並將其深度融合于行業應用,提供從終端到雲端的產品與服務,賦能生命科學、先進製造等領域的智能變革,同步探索在智能零售等場景的創新應用。疫情期間,鎂伽為核酸檢測的應用需求提供了一系列高通量病毒核酸檢測解決方案,全程無人工參與,「樣品進、結果出」的全自動化,最大化保證結果的準確,效率相比人工提升40倍以上,最大可能降低了人工實驗過程中的感染風險。
2021年,鎂伽正式宣佈其自主研發的中國首家通用型智能自動化生物實驗室——鎂伽鯤鵬實驗室一期在北京正式落成,同時也在上海、蘇州開始佈局滿足不同功能的自動化生物實驗室,預計於2022年陸續投入使用。鯤鵬實驗室將專注于細胞基因編輯、高通量藥物篩選、合成生物學等領域的研究,致力於打造次世代的生命科學基礎設施,提高生命科學研發和生產效率,賦能行業融合創新,引領即將到來的生物學革命。
在采訪中,鎂伽認為AI應用企業要從垂直行業的實際問題出發,通過儲備和培養大量複合型人才,做到「比客戶更懂業務」。以下:
■系列導讀
本系列由BCG亨德森智庫與創新工場董事長兼首席執行官李開復博士帶領的創新工場團隊共同推出,圍繞「AI融合產業:『改造者』1如何促進AI普惠」的課題,我們致力於探究傳統企業在應用AI過程中的關鍵要素與合作夥伴,以及傳統企業擁抱AI的範式與路徑。
在上篇中,我們接觸了提供端到端AI醫藥平臺的英矽智能,在今天的文章中,我們將進一步瞭解在生命科學、先進製造與智能零售等創新領域提供智能自動化技術與產品的高科技公司,即「改造者」——鎂伽科技。
1 「改造者」通過傳授其AI技術和垂直行業理解,極大地打破了傳統企業應用AI的瓶頸,充當產業中傳統企業應用AI的橋樑。「改造者」包括AI企業與成功轉型AI的傳統企業。
鎂伽是中國大陸領先的高科技公司,憑藉卓越的智能自動化技術與產品,實現行業創新突破和深度融合,致力於構建智能社會,賦能生命科學、先進製造等領域的智能變革,同步探索在智能零售等場景的創新應用。
■對談實錄
Q1:鎂伽為生命科學、零售和製造業提供AI解決方案,三個行業跨度很大,鎂伽如何進行賽道選擇?在發展過程中如何增進行業理解?
鎂伽:鎂伽是以機器人和自動化技術起家的,但在服務客戶的過程中,我們發現客戶需要的不只是機器人本體或自動化設備,還要結合行業需求痛點的解決方案。生命科學和線下零售都是市場容量很大、增速很快的行業,但自動化和智能化的滲透程度還很低,急切地需要提升生產力,因此我們選擇進入這些賽道。
這三個賽道看似跨度很大,但其實底層技術是相通的。比如人工智能技術可以用於晶圓的缺陷檢測,也可以用在藥物篩選實驗中的細胞培養和克隆挑選。鎂伽開發了許多通用的基礎底層技術作為支撐,比如IntellVega通用視覺平臺已經應用於工業領域線上視覺檢測以及生命科學領域的藥物篩選,鎂伽還有一個技術中台MegaCloud,集合了跨行業的後臺數據,能夠支援鎂伽在不同領域的各項業務。
當然,對於一線業務來說,使用人工智能或者自動化的形態是完全不同的。鎂伽通過儲備和培養大量複合型人才做到「比客戶更懂他的業務」,以體現鎂伽的專業性和技術領先性。以生命科學領域為例,鎂伽不只有人工智能算法科學家,還有包括幹細胞、類器官、合成生物學、免疫學、病毒學等方向的科學家,既有來自CRO、IVD和藥企的專業人才,也有懂市場營銷的專家。由於團隊的多樣性和複合性,鎂伽內部也建立了充分的互相培訓機制,加強團隊之間的磨合與學習。
同時,現代生物學現在已經成了大數據科學,人工智能的應用是大勢所趨。鎂伽在助力生命科學領域轉型的過程,通過智能自動化技術,説明客戶把非常複雜的生物學實驗標準化、自動化和數字化。鎂伽在兩個方面説明生命科學的客戶,一是用行業領先的高效自動化系統説明客戶快速產生海量的多維度實驗數據;二是用鎂伽人工智能平臺説明客戶對生物數據進行模型構建和關聯性分析,進而指導實驗的持續優化。
另外,鎂伽也是少有的在生命科學領域搭建了完整的生物學自動化實驗室的企業,能夠融合我們自己的自動化和人工智能技術。客戶親眼看到我們的實驗室之後都會很受震撼,認識到我們做的事情非常前沿,他們也很想加入。這就使得鎂伽和其他生命科學領域的硬件設備廠家區分開來。
鎂伽甚至發現,從過去幾年到如今,有不少AI技術公司找到我們,希望借鑒我們的垂直行業經驗。這些團隊往往有很強的AI算法能力,但是缺乏數據、缺乏應用數據的方式。以藥物篩選為例,鎂伽可以做到在實驗室設計方案之初就考慮到收集哪些關鍵數據並使其很好地滿足機器學習算法的要求,從而在實驗過程中自動採集證據以證明細胞安全且來源單一,滿足監管的要求。這是鎂伽相比於其他AI公司的獨到優勢。
在開發解決方案的過程中,鎂伽一直堅持從業務問題出發,首先找到高價值的應用點,再把點串成線,由線鋪到面。
Q2:就鎂伽的觀察而言,傳統企業應用AI有哪些共性問題?鎂伽是如何解決的?
鎂伽:傳統企業首先對AI技術能夠解決什麼問題比較模糊,也不太能理解AI是如何解決問題的。例如對AI如何能替代人工檢查、或者提升產品良率都不理解,因此很難提煉他們對AI的需求。鎂伽需要引導傳統企業的決策者來梳理業務流程,明確行業的特定痛點,從而制定解決方案,並計算和衡量自動化和AI能夠為企業帶來的經濟價值。
同時,傳統企業往往也缺乏高質量的數據,或者有數據但並未標記、數據不標準,無法有效地投入AI應用。傳統企業還缺乏AI人才,自動駕駛和視頻監控行業的人才和技術可能相對更多,但在傳統製造、生物醫藥這些行業,AI人才和技術是較為欠缺的。鎂伽建立了高效的數據獲取、自動化模型訓練和高精度上線部署的AI閉環,軟硬件團隊和測試團隊也做了充分的磨合,可以極大地提升傳統企業研發應用AI的效率。否則,從模型搭建、數據清洗到模型訓練、結果分析部署等等諸多環節,對傳統企業而言都是費時費力甚至難以為繼的。
鎂伽還會幫傳統企業搭建懂AI的團隊和建立完整的數據體系,包括説明傳統企業的團隊理解如何提煉數據、要采集並標注什麼數據等等。幫助傳統企業建立一支懂得AI應用的團隊有利於傳統企業的持續AI賦能。鎂伽內部建立了一個共有技術平臺,以機器人控制、2D和3D視覺、深度學習為核心的IntellVega平臺,及為用戶提供物聯網、SaaS線上集群服務和大數據分析等核心的 MegaCloud平臺,通過專業的開發團隊為客戶提供高效、智能化的整體解決方案,而傳統企業只需要提煉他們自身對產品工藝、質量的要求就可以了。
■要點回顧
1、「改造者」需要從垂直行業的業務問題出發,打造複合型團隊(既懂AI又懂垂直行業的專業人才),並加強團隊融合,實現「比客戶更懂業務」。
2、一流的「改造者」不只是提供產品和解決方案而已,還應當幫助傳統企業驅動變革管理,幫助識別和定義問題和需求,驅動認知轉變並提高員工技能,從而使AI應用在長期可持續。
■本期內容來自BCG對話鎂伽首席科學家王承志博士、首席技術官丁新宇先生、研發副總裁段金瑞博士、人工智能算法科學家蒯多傑博士和孫新先生。
ai模型訓練 在 Inside 硬塞的網路趨勢觀察 Facebook 的最佳貼文
#2021INSIDE未來日|近來的產業 buzzword 「AIoT數位轉型」到底是什麼,你知道嗎?
首先,AIoT 其實顧名思義就是人工智慧(AI) 加上物聯網(IoT)混合產出的架構。不過,難道拿一個別人在 Github 訓練好的 AI 模型,套在聯網裝置就能稱自己的東西就能叫 AIoT?
其實呢,這個答案還是得看這些收集起來的「數據」到底有沒有其價值而定。一方面人工智慧必須透過物聯網收集大數據去訓練機器學習模型,另一方面一旦模型訓練好後,AI 就能把 IoT 數據轉換為有用的資訊,用來改善各種決策流程,進而形成「物聯網資料即服務」的模式。
如今無論是用藍牙、NFC、RFID、Wi-Fi 還是 ZigBee 或 Z-Wave 甚至是 5G,AIoT 結合雲端服務,早已滲透到工業製造、醫療保健、商販零售、交通運輸與基礎建設等各行各業中,甚至開始進行新一輪產業顛覆了。
而身為半導體與製造產業樞紐位置的台灣,其實也正位於這波產業轉型的暴風眼中。
你是否對AIoT還有許多的疑惑?別擔心,今年的 #INSIDE未來日 將在9/24(五)舉行線上論壇,主題正是「AIoT 智慧未來」。我們打算為大家一次解謎 AIoT 這個當紅炸子雞。這次不僅邀請到工業局局長呂正華,還有產業界包括耐能、VMware、AWS、震旦雲還有永聯等各界大佬。
現在就來瞭解更多吧 👉 https://lihi1.cc/Q2Pp6
ai模型訓練 在 珊蒂微AI Youtube 的最佳貼文
🍿在這支影片當中,觀眾朋友的提問如下,李老師都一一耐心回答惹(as always😊)
1. 機器可以回答哲學性的問題嗎?👉影片中,老師告訴你一個好玩的網站!
2. 神經網路架構的選擇方針?👉老師給出三個思考方向!
3. 老師有沒有Twitter? 👉影片揭曉!
4. 對機器學習領域未來發展趨勢的看法?👉影片揭曉!
5. 怎麼用Google sheets開發機器人?👉影片揭曉!
🍭可以跟你玩文字接龍的AI:https://talktotransformer.com/
🍭李宏毅老師有提到「GPT-2」的課程連結:https://www.youtube.com/watch?v=ugWDIIOHtPA
#跟你玩文字接龍的AI
#機器學習的未來
#選用神經網路架構的三撇步
#Generative Pre-Training (GPT)
#GPT-2
#Transformer
#Residual connection
#Deep Learning
#台大電機李宏毅專訪
#AI神奇模型訓練師
#珊蒂微AI
#人工智慧
#AI
ai模型訓練 在 珊蒂微AI Youtube 的最佳解答
(下集)
🍿在下集當中,李老師跟大家聊的內容有:
1. 老師的宅男風格教學之力
2. 老師在2020年春季將會開一門全新課程!
3. 老師「請公子吃電信餅」🍪🍪🍪
4. 老師的「台大語音實驗室」都在做什麼?
🤖五個研究方向
🤖GAN來GAN去
🤖神奇模型「Multi-BERT」
5. 台大傅鐘的老梗笑話
6. 最後有李宏毅老師秘辛大爆料
🍿影片中提到的五個研究主題,李老師都精選了一篇論文,連結如下,請各位大大笑納:
非督導式語音辨識: https://arxiv.org/abs/1904.04100
非督導式語音轉換: https://arxiv.org/abs/1804.02812
非督導式文件摘要: https://arxiv.org/abs/1810.02851
問答系統: https://ieeexplore.ieee.org/document/8700217
個人化聊天機器人: https://arxiv.org/abs/1901.09672
#GAN來GAN去
#台大電機李宏毅專訪
#AI神奇模型訓練師
#珊蒂微AI
#人工智慧
#AI
ai模型訓練 在 珊蒂微AI Youtube 的最讚貼文
(上集)
這集【人物專訪】來到台灣大學跟一位「宅男味很重」的電機系老師合作拍攝影片,他的研究風格 and 教學風格充斥著:二次元動漫梗、PTT鄉民詞彙、寶可夢、周星馳電影梗…等等元素,甚至還摻雜了一點鄉土劇的成分在他的研究與教學當中…
ㄟ!我不是在詆毀他喔,他這樣的研究跟教學風格可是大受學生歡迎呢!他是誰呢?!
#台灣大學電機系
#李宏毅的宅男之力
#AI神奇模型訓練師
#珊蒂微AI
#人工智慧
#AI
ai模型訓練 在 35億張Instagram照片幫助Facebook訓練AI模型 - 銘報即時新聞 的必吃
Facebook 利用Instagram 35 億張公開照片以及Hashtag,訓練機器學習模型。(圖/擷取自網路、文/鄭妙湘). 記者/鄭妙湘. 為打造出厲害的AI 機器學習 ... ... <看更多>