💥 20 個 #常見的統計錯誤,你犯過,或是犯了卻不知道嗎?⠀
⠀
MedCalc 的作者 Frank,在 Facebook 分享了一篇跟統計相關的文章,叫做「生物醫學研究文章中,連你都可以發現的 20 個統計錯誤」,很有意思。(連結請見原始貼文)
⠀
我(蔡依橙)認真看完後,覺得蠻不錯的,於是把這 20 個統計錯誤的標題翻成中文,協助大家節省時間,如果剛好有興趣的,可再針對該部分去閱讀原文。接著,分享一些我看完之後的想法。
⠀
⠀
1. 數值報告時,提供了不必要的精確。例如 60 公斤體重,硬要寫成 60.18 公斤。
⠀
2. 將連續變項分組,變成次序變項,但沒有說明為什麼這樣分。像是 CRP 不以數值去統計,而分成低、中、高三組,卻沒說明為什麼這樣分。
⠀
3. 配對資料,只報告各組平均,卻沒報告其改變。也就是只報告治療前血壓、治療後血壓,卻沒報告有多少人上升、多少人下降、平均下降多少。
⠀
4. 描述性統計的誤用,尤其該用 median (interquartile range) 的,硬是用成 mean +- SD。
⠀
5. 使用 standard error of the mean (SEM) 描述量測的精確度,而非 95% CI。
⠀
6. 只報告 p 值,卻沒提到差值以及臨床意義。
⠀
7. 誤用統計方式。尤其常見的是混淆有母數跟無母數統計方法。
⠀
8. 使用線性迴歸,卻沒有先確定資料之間是真的有線性關係。
⠀
9. 沒有使用全部的資料,然後又沒把去掉的資料「為什麼被去掉」說清楚。
⠀
10. 多組比較的 p 值校正問題。
⠀
11. 在隨機分組研究時,過於詳盡地比較了兩組受試者的基本資料,像是性別比例、年齡、體重、血壓等等,而且資料好得太奇怪。
⠀
12. 報告檢驗數值時,沒有定義 normal 與 abnormal。
⠀
13. 計算 sensitivity 與 specificity 時,沒有說明一些介在灰色地帶的檢查結果,如何呈現與去除。
⠀
14. 使用圖片與表格,只是為了儲存數據,而非以協助讀者理解為出發點。
⠀
15. 畫出來的數據圖,視覺主觀上給人的印象,竟然跟數據本身不同。
⠀
16. 在報告數據與解讀時,搞不清楚 units of observation 是什麼,例如心臟病的觀察研究,在 1000 個患者中有 18 位心臟病發,那 units of observation 就是 18。但如果這個研究是以診斷正確率為主,那 sample size 就是 1000。
⠀
17. 把不顯著的統計,或 low power,解讀成 negative,而非 inconclusive。
⠀
18. 分不清楚解釋性研究與實務性研究,前者為 explanatory / efficacy / laboratory,後者為 pragmatic / effectiveness / real world。嘗試兩種混著做,結果兩邊都做不好。
⠀
19. 沒有用臨床能理解的方式來報告最終結果。
⠀
20. 把統計的顯著性,當成臨床的重要性。例如:癌症用新藥治療,統計上很顯著的好,但追蹤了五年,患者只延長了七天的壽命。這就是統計有顯著,但臨床意義不大的例子。
⠀
⠀
🗨 我(蔡依橙)的一些想法
⠀
由統計專業人的角度,來看生物醫學發表,是很有警惕意義的,能讓準備發表的朋友,仔細看看自己是不是也犯了相關的錯誤。
⠀
但另一個角度看,作者也提到,這些錯誤在幾乎一半的生物醫學論文上反覆出現!這就代表,其實生物醫學論文要刊登,並不代表我們什麼錯都不能犯,相反地,這 20 個錯誤裡頭,有些就算犯了,也還是能被刊登。
⠀
以我們自己發表,以及過去協助同學的經驗來說,我會認為 2、7、10、14、15,是初學者也 #必須理解並避開的,其他的則是發表起步了之後,陸陸續續去注意,在往更高分期刊挑戰時,逐漸進步就行。
⠀
實務上,3 分以下的醫學期刊,幾乎沒有專門的統計查核,你只要能通過「一般同行」的統計知識審查就行。也就是說,我是一個放射科醫師,剛開始起步,投稿到放射科 3 分以下期刊,文章中的統計,只要「#一般有在做研究的放射科醫師」覺得可以就行,不見得要到「統計專家看過並挑不出毛病」。
⠀
對於初學者如何起步,實務的協助,新思惟規劃了各種類型的研究課程,歡迎有興趣的朋友可以參考。目前正在開放報名中的,有以下三場工作坊,歡迎您瞭解各課程的課綱後,評估挑選最符合您需求的內容,前來上課,讓我們協助您成功起步。
⠀
🟠 2021 / 11 / 7(日)統合分析工作坊
無經費、資源少也能發表,不用 IRB 且免收案的好選擇。
https://meta-analysis.innovarad.tw/event/
⠀
🔵 2021 / 10 / 17(日)臨床研究與發表工作坊
全新改款!跟著國際學者走,讓你寫作投稿都上手。
https://clip2014.innovarad.tw/event/
⠀
🟢 2021 / 10 / 16(六)個案報告、技術發表與文獻回顧工作坊
把臨床上的各種想法,在 PubMed 化作專業生涯上的里程碑。
https://casereport.innovarad.tw/event/
⠀ ⠀
不只是說說而已,我們會舉實例,說明其意義、如何避開,在互動實作過程,實際由各位在自己的電腦上操作,從數據到軟體,從統計到繪圖,一次搞定,並避開常見錯誤,是真正以 #初學者起步 為核心的規劃。
⠀
⠀
二十個常見的統計錯誤,與實務寫作時的考量。
🔗 原始貼文 │ https://bit.ly/2WESphu
同時也有7部Youtube影片,追蹤數超過6萬的網紅Herman Yeung,也在其Youtube影片中提到,HKDSE Mathematics 數學天書 訂購表格及方法︰ http://goo.gl/forms/NgqVAfMVB9 課程簡介︰ https://youtu.be/Rgm7yUVG9cY ----------------------------------------------------...
「interquartile range」的推薦目錄:
- 關於interquartile range 在 蔡依橙的閱讀筆記 Facebook 的精選貼文
- 關於interquartile range 在 新思惟國際 Facebook 的最讚貼文
- 關於interquartile range 在 มติพล ตั้งมติธรรม Facebook 的最佳解答
- 關於interquartile range 在 Herman Yeung Youtube 的最讚貼文
- 關於interquartile range 在 Herman Yeung Youtube 的精選貼文
- 關於interquartile range 在 Herman Yeung Youtube 的最佳解答
interquartile range 在 新思惟國際 Facebook 的最讚貼文
💥 20 個 #常見的統計錯誤,你犯過,或是犯了卻不知道嗎?⠀
⠀
MedCalc 的作者 Frank,在 Facebook 分享了一篇跟統計相關的文章,叫做「生物醫學研究文章中,連你都可以發現的 20 個統計錯誤」,很有意思。(連結請見原始貼文)
⠀
我(蔡依橙)認真看完後,覺得蠻不錯的,於是把這 20 個統計錯誤的標題翻成中文,協助大家節省時間,如果剛好有興趣的,可再針對該部分去閱讀原文。接著,分享一些我看完之後的想法。
⠀
⠀
1. 數值報告時,提供了不必要的精確。例如 60 公斤體重,硬要寫成 60.18 公斤。
⠀
2. 將連續變項分組,變成次序變項,但沒有說明為什麼這樣分。像是 CRP 不以數值去統計,而分成低、中、高三組,卻沒說明為什麼這樣分。
⠀
3. 配對資料,只報告各組平均,卻沒報告其改變。也就是只報告治療前血壓、治療後血壓,卻沒報告有多少人上升、多少人下降、平均下降多少。
⠀
4. 描述性統計的誤用,尤其該用 median (interquartile range) 的,硬是用成 mean +- SD。
⠀
5. 使用 standard error of the mean (SEM) 描述量測的精確度,而非 95% CI。
⠀
6. 只報告 p 值,卻沒提到差值以及臨床意義。
⠀
7. 誤用統計方式。尤其常見的是混淆有母數跟無母數統計方法。
⠀
8. 使用線性迴歸,卻沒有先確定資料之間是真的有線性關係。
⠀
9. 沒有使用全部的資料,然後又沒把去掉的資料「為什麼被去掉」說清楚。
⠀
10. 多組比較的 p 值校正問題。
⠀
11. 在隨機分組研究時,過於詳盡地比較了兩組受試者的基本資料,像是性別比例、年齡、體重、血壓等等,而且資料好得太奇怪。
⠀
12. 報告檢驗數值時,沒有定義 normal 與 abnormal。
⠀
13. 計算 sensitivity 與 specificity 時,沒有說明一些介在灰色地帶的檢查結果,如何呈現與去除。
⠀
14. 使用圖片與表格,只是為了儲存數據,而非以協助讀者理解為出發點。
⠀
15. 畫出來的數據圖,視覺主觀上給人的印象,竟然跟數據本身不同。
⠀
16. 在報告數據與解讀時,搞不清楚 units of observation 是什麼,例如心臟病的觀察研究,在 1000 個患者中有 18 位心臟病發,那 units of observation 就是 18。但如果這個研究是以診斷正確率為主,那 sample size 就是 1000。
⠀
17. 把不顯著的統計,或 low power,解讀成 negative,而非 inconclusive。
⠀
18. 分不清楚解釋性研究與實務性研究,前者為 explanatory / efficacy / laboratory,後者為 pragmatic / effectiveness / real world。嘗試兩種混著做,結果兩邊都做不好。
⠀
19. 沒有用臨床能理解的方式來報告最終結果。
⠀
20. 把統計的顯著性,當成臨床的重要性。例如:癌症用新藥治療,統計上很顯著的好,但追蹤了五年,患者只延長了七天的壽命。這就是統計有顯著,但臨床意義不大的例子。
⠀
⠀
🗨 我(蔡依橙)的一些想法
⠀
由統計專業人的角度,來看生物醫學發表,是很有警惕意義的,能讓準備發表的朋友,仔細看看自己是不是也犯了相關的錯誤。
⠀
但另一個角度看,作者也提到,這些錯誤在幾乎一半的生物醫學論文上反覆出現!這就代表,其實生物醫學論文要刊登,並不代表我們什麼錯都不能犯,相反地,這 20 個錯誤裡頭,有些就算犯了,也還是能被刊登。
⠀
以我們自己發表,以及過去協助同學的經驗來說,我會認為 2、7、10、14、15,是初學者也 #必須理解並避開的,其他的則是發表起步了之後,陸陸續續去注意,在往更高分期刊挑戰時,逐漸進步就行。
⠀
實務上,3 分以下的醫學期刊,幾乎沒有專門的統計查核,你只要能通過「一般同行」的統計知識審查就行。也就是說,我是一個放射科醫師,剛開始起步,投稿到放射科 3 分以下期刊,文章中的統計,只要「#一般有在做研究的放射科醫師」覺得可以就行,不見得要到「統計專家看過並挑不出毛病」。
⠀
對於初學者如何起步,實務的協助,新思惟規劃了各種類型的研究課程,歡迎有興趣的朋友可以參考。目前正在開放報名中的,有以下三場工作坊,歡迎您瞭解各課程的課綱後,評估挑選最符合您需求的內容,前來上課,讓我們協助您成功起步。
⠀
🟠 2021 / 11 / 7(日)統合分析工作坊
無經費、資源少也能發表,不用 IRB 且免收案的好選擇。
https://meta-analysis.innovarad.tw/event/
⠀
🔵 2021 / 10 / 17(日)臨床研究與發表工作坊
全新改款!跟著國際學者走,讓你寫作投稿都上手。
https://clip2014.innovarad.tw/event/
⠀
🟢 2021 / 10 / 16(六)個案報告、技術發表與文獻回顧工作坊
把臨床上的各種想法,在 PubMed 化作專業生涯上的里程碑。
https://casereport.innovarad.tw/event/
⠀ ⠀
不只是說說而已,我們會舉實例,說明其意義、如何避開,在互動實作過程,實際由各位在自己的電腦上操作,從數據到軟體,從統計到繪圖,一次搞定,並避開常見錯誤,是真正以 #初學者起步 為核心的規劃。
⠀
⠀
二十個常見的統計錯誤,與實務寫作時的考量。
🔗 原始貼文 │ https://bit.ly/2WESphu
interquartile range 在 มติพล ตั้งมติธรรม Facebook 的最佳解答
รู้จักกับ Confidence Interval
Confidence Interval เป็นคอนเซปต์ที่คนทั่วๆ ไปมักจะรู้จักกันน้อยมาก ทั้งๆ ที่ในความเป็นจริงแล้ว มันเป็นคอนเซปต์ที่เราคุ้นเคยกันดีมาก และเราก็ใช้กันอยู่ทุกวันในชีวิตประจำวัน
วิทยาศาสตร์นั้นใช้ “คณิตศาสตร์” เป็นภาษาหลักในการสื่อสาร และเรามักจะวัด “ปริมาณ” ออกมาแทนเป็นตัวเลขเสมอ เวลาเราอ่านข่าว เรามักจะคุ้นเคยกับการรายงานตัวเลขเพียงตัวหนึ่ง แทนค่าอะไรสักอย่าง เอกภพมีอายุ 13.8 พันล้านปี โลกมีรัศมี 6,378 กม. ปริมาณ antibody ในกระแสเลือด คือ 9000 U/mL ฯลฯ ทั้งๆ ที่ความจริงแล้วในทางวิทยาศาสตร์เราจะไม่ได้วัดค่าเป็นตัวเลขเพียงตัวเดียว แต่จะเป็นช่วงตัวเลขช่วงหนึ่ง ที่เรียกว่า “Confidence Interval”
อาจารย์สอนวิชาเคมีวิเคราะห์ที่ผมเรียนด้วย ครั้งหนึ่งเคยพูดเอาไว้ ในประโยคแรก ของคาบเรียนแรกของวิชาว่า
“Every measurement is a lie, the difficulties come when you try to believe it”
“ทุกๆ การวัดก็คือการโกหก ปัญหามันอยู่ที่ว่าเราพร้อมจะเชื่อมันได้แค่ไหน”
ลองจินตนาการดูว่าเราไปซื้อหมูสับที่ตลาด แม่ค้าก็หยิบหมูมากำมือหนึ่ง น้ำหนัก(มวล)ที่แท้จริงของหมูสับนั้นเป็นเป็นค่าๆ หนึ่ง ซึ่งไม่มีใครหรือสิ่งใดในเอกภพที่จะสามารถทราบได้ สิ่งที่ตาชั่งของแม่ค้าบอกนั้นเป็นเพียงการ “ประมาณ” น้ำหนักของหมูชิ้นนั้นเท่านั้น
สมมติว่าตาชั่งนั้นบอกว่าหมูหนัก “สองขีด” แท้จริงแล้ว “สองขีด” นั้นไม่ใช่น้ำหนักที่แท้จริงของหมู แต่เป็นเพียงการประมาณค่าน้ำหนักจริงของเนื้อหมู ที่อยู่ระหว่างสองขีดบวกลบกับค่าความคลาดเคลื่อนที่ได้จากเครื่องมือ
ซึ่งความเป็นจริงแล้ว นี่ไม่ได้เป็นเพียงคอนเซปต์ในอุดมคติอันสวยหรู และเรื่องมากอะไรของนักวิทยาศาสตร์เพียงอย่างเดียว แต่เป็นสิ่งที่เราทุกคนใช้ และตกลงกันอยู่ในชีวิตประจำวัน
เพราะเวลาเราตกลงซื้อ “หมูสองขีด” กับแม่ค้า เราก็ไม่ได้มีความคาดหวังว่าจะต้องซูมเข้าไปดูเข็มว่ามันอยู่ที่ 200 กรัม กับอีกกี่มิลลิกรัม หรือไมโครกรัม เราอาจจะพอใจ และไม่ได้ติดใจอะไรกับแม่ค้า ตราบใดที่นน. ของหมูนั้นอยู่ในค่าที่ “ยอมรับได้” ซึ่งสำหรับหมูสองขีดนี้อาจจะอยู่ในขอบเขต 150-250 กรัม (ขีดครึ่งถึงสองขีดครึ่ง) ก็ยังไม่น่าเกลียดอะไรมาก (เว้นเสียแต่คุณจะเป็นทนายความหัวหมอคนหนึ่งในเมืองเวนิส)
นั่นหมายความว่า เวลาเราบอกกันว่า “หมูสองขีด” แท้จริงแล้วเรากำลังบอกว่า “ตั้งแต่ขีดครึ่งกว่าๆ ไปจนถึงสองขีดครึ่ง” หรือเวลาเราบอกว่าเราใช้เวลาสองชม. เดินทางกลับบ้าน เราไม่ได้หมายความว่า “สองชั่วโมง ศูนย์นาที ศูนย์วินาที ศูนย์มิลลิวินาที” ไม่ขาดไม่เกิน แต่เราหมายความว่า “ระหว่าง ชั่วโมงนิดๆ ไปถึงเกือบสามชม”
ซึ่งไอ้ “ขอบเขตที่ยอมรับได้” นี่เอง ที่เกี่ยวข้องกับ “Confidence Interval” และมีความเกี่ยวข้องกับ “เลขนัยะสำคัญ” เพราะมันเป็นตัวบอกว่าเรา "พร้อมที่จะเชื่อคำโกหกนั้นแค่ไหน" เช่น คนที่บอกว่าใช้เวลากลับบ้าน “สองชั่วโมง” นั้นกำลังพยายามสื่อถึงขอบเขตที่ยอมรับได้ ที่แตกต่างจากผู้ที่บอกว่าใช้เวลากลับบ้าน “หนึ่งชั่วโมง สี่สิบเจ็ดนาที” เพราะเราคงไม่จำเป็นต้องระบุว่าสีสิบเจ็ดนาที ถ้าเราไม่ได้มั่นใจในหลักนาทีที่สำคัญขนาดนั้น
และนี่เป็นเหตุผลว่าทำไมเราจึงไม่ควรจะอ่านตัวเลขทุกหลักที่ได้จากเครื่องคิดเลข เช่น ป้ายยอดดอยอินทนนท์เขียนเอาไว้ว่าดอยอินทนน์มีความสูงจากระดับน้ำทะเล 2,565.3341 เมตร (เขียนงี้จริงๆ ไม่เชื่อลองไปดู) ซึ่งการระบุความแม่นยำไปถึงหลัก 0.1 มิลลิเมตรนั้นสื่อว่าความสูงที่วัดได้นี่นั้นแม่นยำยิ่งกว่าความสูงของเม็ดทรายหนึ่งเม็ด ซึ่งเป็นไปไม่ได้ (คือแค่คนวัดยืนหายใจความสูงก็เปลี่ยนไปมากกว่าทศนิยมที่เขากล่าวอ้างแล้ว)
ซึ่งในทางวิทยาศาสตร์นั้นก็ใช้หลักการเดียวกัน แต่เรามีการระบุให้รัดกุมไปกว่านั้น โดยเราจะบอกเป็น Confidence Interval ควบคู่ไปกับเปอร์เซ็นต์ความน่าเชื่อถือของขอบเขตนั้น หรือที่เรียกกันว่า Confidence Level หรือ "เรามั่นใจแค่ไหน ว่าคำตอบนั้นอยู่ในขอบเขตที่เราระบุเอาไว้"
เราสามารถนึกถึง Confidence Level ง่ายๆ โดยการจินตนาการแบบนี้ “สมมติว่าเราต้องวางเงินเดิมพันว่าค่าของเขตที่เรารายงานนั้นครอบคลุมไปถึงค่าที่แท้จริง เราจะกล้าเดิมพันแค่ไหน” แน่นอนว่าเราไม่มีวันมั่นใจได้ “100%” แต่หากเราพูดถึงการเดิมพัน ยิ่งเรามั่นใจมาก เราก็อาจจะยอมที่จะเดิมพันที่เสี่ยงมากขึ้น เช่น หากเรามั่นใจว่าเราจะถูกถึงมากกว่า 95% ต่อให้เดิมพันเสียเปรียบ 1 ต่อ 20 ก็ยังนับเป็นการลงทุนที่คุ้มค่าที่จะเสี่ยง
ดังนั้นค่าทุกค่าที่รายงานในทางวิทยาศาสตร์ นั้นจะมีอยู่สองส่วนเสมอ (ไม่ว่าจะละเอาไว้ในฐานที่เข้าใจหรือไม่ก็ตาม) นั่นก็คือเปอร์เซนต์ความเชื่อมั่น ว่าผู้รายงานมีความเชื่อมั่นในตัวเลขนี้เท่าใด และช่วงขอบเขตของตัวเลขที่สอดคล้องกับเปอร์เซนต์ความเชื่อมั่นเท่านั้น
ซึ่งยิ่งเราระบุขอบเขตให้กว้างเท่าไหร่ก็จะยิ่งมีโอกาสที่ค่าจริงจะอยู่ในขอบเขตนั้นมากขึ้นเพียงเท่านั้น เราอาจจะไม่มั่นใจเท่าไหร่ว่าหมูชิ้นนี้จะมีน้ำหนักระหว่าง 199.999 กรัมไปจนถึง 200.001 กรัม แต่เรามั่นใจค่อนข้างมากว่า น้ำหนักน่าจะอยู่ระหว่าง 100-300 กรัม และเรามั่นใจล้านเปอร์เซ็นต์ ว่าน้ำหนักของหมูนั้นมากกว่าศูนย์ แค่น้อยกว่ามวลของเอกภพ (แต่ขอบเขตที่ได้จากความมั่นใจเว่อร์ระดับนี้นั้นอาจจะไม่ได้มีความหมายเสียเท่าไหร่)
เช่น นักวิทยาศาสตร์ที่ชั่งสารอาจจะบอกว่า ตัวอย่างนี้มีมวล 200.0 +/- 0.2 g with 95% Confidence Interval รัศมีของโลกมีระยะทาง 6.3781366 +/- 1 x10^6 m ซึ่งยิ่งเครื่องมือมีความแม่นยำเพียงใด เราอาจจะยิ่งได้ขอบเขตของความน่าเชื่อถือที่แคบเท่านั้น แต่เราไม่มีวันที่จะสามารถหาน้ำหนักหรือรัศมี “ที่แท้จริง” เป๊ะๆ ได้เลย เราได้แต่เพียงทำให้ขอบเขตเล็กลงเรื่อยๆ
นอกจากความแม่นยำของเครื่องมือแล้ว อีกปัจจัยหนึ่งก็คือเรื่องของ “สถิติ” เช่น หากเราทำการสำรวจน้ำหนักของประชากรชาวไทย เราจะพบว่าน้ำหนักแต่ละคนนั้นมีการกระจายตัวออก และไม่เท่ากัน เราก็จะใช้ Confidence Interval และ Confidence Level ในการรายงานค่าที่เป็นตัวแทนของประชากรนี้ได้เช่นกัน ว่าเรามีความมั่นใจเพียงใด ว่าค่าที่แท้จริงจะอยู่ในขอบเขตนี้ แน่นอนว่าในประชากรที่มีค่าที่แตกต่างกันมาก ขอบเขตของความเชื่อมั่นย่อมที่จะกระจายตัวได้กว้างเป็นธรรมดา
ซึ่งการรายงาน Confidence Interval ที่ไม่สอดคล้องกับข้อมูล แน่นอนว่าเทียบเท่ากับการ “บิดเบือนความจริง” เพราะเรากำลังจะบอกว่าเรามั่นใจว่าค่าจริงนั้นอยู่ในช่วงนี้ ทั้งๆ ที่ความเป็นจริงแล้วข้อมูลไม่ได้บ่งชี้เช่นนั้นเลย
เช่น หากเรามีข้อมูลเพียงสองจุด แต่เรากลับแทนค่า Confidence Interval ด้วย “พิสัย” ของข้อมูล (ดังภาพ) เท่ากับเรากำลังบอกว่าข้อมูลที่เราวัดเพียงสองครั้งนั้น ได้สะท้อนถึงขอบเขตบน และขอบเขตล่างของค่าจริงเป็นที่เรียบร้อยแล้ว และเท่ากับเป็นการบ่งชี้ว่าเรามีความเชื่อมั่นว่าในการวัดครั้งถัดไป เราจะได้ค่าที่อยู่ระหว่างสองครั้งแรกที่วัดอย่างแน่นอน เปรียบเทียบได้กับการอ้างว่า เพียงสองครั้งที่เราวัดนั้น เราได้บังเอิญสุ่มได้ค่าที่มากที่สุด และน้อยที่สุดไปโดยบังเอิญภายในสองครั้งแรกที่ทำการวัด
หากเปรียบเทียบ ก็เปรียบได้กับการทอยลูกเต๋าที่เราไม่ทราบว่ามีกี่ด้าน และมีตัวเลขเท่าใดบ้างสองครั้ง ได้เลข 4 กับเลข 6 แล้วเราก็สรุปว่าค่าส่วนมากที่เต๋าลูกนี้จะทอยได้นั้น จะอยู่ระหว่าง 4 ถึง 6
เราอาจจะคิดว่า การโกหกข้อมูลมันทำได้เฉพาะการรายงานค่าเฉลี่ยที่ไม่ตรงตามความเป็นจริง แต่ในความเป็นจริงแล้วนั้น อย่างที่บอกไปแล้วว่าข้อมูลทางวิทยาศาสตร์นั้นมีทั้งเปอร์เซ็นต์ความน่าเชื่อถือ กับขอบเขตตัวเลข ซึ่งแม้ว่าเราจะรายงานค่าเฉลี่ยถูกต้อง แต่หากเรารายงานความน่าเชื่อถือ หรือขอบเขตที่ผิดไป (หรือไม่รายงาน) เราก็สามารถทำให้คนอ่านเข้าใจผิดได้เช่นกัน เช่นข้อมูลที่ไม่มีความน่าเชื่อถือ แต่แอบอ้างให้คนอ่านเข้าใจว่ามีความน่าเชื่อถือสูงกว่าที่ควรจะเป็น หรือการทำให้ขอบเขตแคบกว่าที่คิด (โดยการเลือกความน่าเชื่อถือที่ต่ำลง เป็นต้น) ก็อาจทำให้เข้าใจผิดเกี่ยวกับข้อมูลได้เช่นกัน
เช่น หากดูค่าเฉลี่ยเปรียบเทียบแล้วเราอาจจะพบว่าข้อมูลชุดหนึ่งมีค่าเฉลี่ยสูงกว่า แต่หากเราพิจารณาขอบเขตที่ 95% CI แล้วเราจะพบว่าข้อมูลส่วนมากมีความคาบเกี่ยวกันเสียส่วนมาก ทำให้ข้อสรุปที่ได้ควรจะเป็นว่าสองข้อมูลนี้ไม่มีความแตกต่างกันอย่างมีนัยะสำคัญ แต่หากเราเปลี่ยนไปเลือก 65% CI เราอาจจะพบว่าขอบเขตที่น่าเชื่อถือของข้อมูลทั้งสองนั้นแยกจากกันมากขึ้น เราอาจทำให้ผู้อ่านเข้าใจผิดไปว่าข้อมูลทั้งสองนั้นแตกต่างกันมากกว่าที่ควรจะเป็น
ซึ่งแน่นอนว่านี่ไม่ใช่หลักการทางสถิติที่ควรจะเป็น
ป.ล. หลังจากที่หลายๆ คนทักมา และดูเพิ่มเติมแล้ว เข้าใจว่า “ที่มา” ของกราฟ n=2 จะใช้ Interquartile range Q1 Q3 แทนนะครับ ซึ่งเนื่องจากข้อมูลมีไม่พอ เลยถูกปัดไปเป็น min/max โดยปริยาย ซึ่งแม้ว่า IQR จะมีความหมายแตกต่างจาก CI พอสมควร แต่โดยหลักการที่ข้อมูลไม่ได้แสดงแทนด้วยเลขตัวเดียว แต่แทนถึงประชากรที่มีความหลากหลาย ก็ไม่ได้แตกต่างกันมากครับ
interquartile range 在 Herman Yeung Youtube 的最讚貼文
HKDSE Mathematics 數學天書 訂購表格及方法︰ http://goo.gl/forms/NgqVAfMVB9
課程簡介︰ https://youtu.be/Rgm7yUVG9cY
------------------------------------------------------------------------------
DSE 數學 Core 天書 D 第1堂 (共2小時1分鐘) https://www.youtube.com/playlist?list=PLzDe9mOi1K8rpwKQvMwGSscFQo9vNiJEs
DSE 數學 Core 天書 D 第2堂 (共2小時14分鐘) https://youtu.be/P5lqM4Bxb14?list=PLzDe9mOi1K8rpwKQvMwGSscFQo9vNiJEs
DSE 數學 Core 天書 D 第3堂 (共2小時8分鐘) https://youtu.be/vVnyHSIHXJM?list=PLzDe9mOi1K8rpwKQvMwGSscFQo9vNiJEs
仿 Past Paper 系列 (DSE Probability 概率) (共1小時43分鐘) https://youtu.be/QOrwlA830pk?list=PLzDe9mOi1K8rpwKQvMwGSscFQo9vNiJEs
仿 Past Paper 系列 (DSE nCr, nPr) (共2小時29分鐘) https://youtu.be/tN6LGFfkcTc?list=PLzDe9mOi1K8rpwKQvMwGSscFQo9vNiJEs
DSE 數學 Core 天書 D 第4堂 (共2小時11分鐘) https://youtu.be/iPQbFbDM988?list=PLzDe9mOi1K8rpwKQvMwGSscFQo9vNiJEs
Past Paper Demo (太多,無法估計) https://youtu.be/41cdF_BqxME?list=PLzDe9mOi1K8rpwKQvMwGSscFQo9vNiJEs
------------------------------------------------------------------------------
DSE 數學 Core 天書 D 的內容︰
1 -- More about Probability 進階概率
2 -- Permutation (nPr) & Combination (nCr) 排列與組合
3 -- Statistics & Measures of Dispersion 統計及離差之量度
------------------------------------------------------------------------------
HKDSE 數學 Core 各天書 的內容︰ https://www.facebook.com/hy.publishing/photos/a.312736375489291.68655.198063650289898/933817946714461/?type=3&theater
HKDSE 數學 Core 特別快車班
28堂 (共7本天書) 完成整個 HKDSE 數學 Core
(中一至中六) 要考的所有課題,
適合任何考 HKDSE 的同學上課 (中四至中六都合適)
(p.s. Herman Yeung 所有天書,中英對照)
------------------------------------------------------------------------------
Please subscribe 請訂閱︰
https://www.youtube.com/hermanyeung?sub_confirmation=1
------------------------------------------------------------------------------
Blogger︰ https://hermanutube.blogspot.hk/2016/02/herman-yeung-main-menu.html
Facebook︰ https://www.facebook.com/hy.page
YouTube︰ https://www.youtube.com/HermanYeung
Instagram︰ https://www.instagram.com/hermanyeung_hy
------------------------------------------------------------------------------
interquartile range 在 Herman Yeung Youtube 的精選貼文
HKDSE Mathematics 數學天書 訂購表格及方法︰ http://goo.gl/forms/NgqVAfMVB9
課程簡介︰ https://youtu.be/Rgm7yUVG9cY
------------------------------------------------------------------------------
DSE 數學 Core 天書 D 第1堂 (共2小時1分鐘) https://www.youtube.com/playlist?list=PLzDe9mOi1K8rpwKQvMwGSscFQo9vNiJEs
DSE 數學 Core 天書 D 第2堂 (共2小時14分鐘) https://youtu.be/P5lqM4Bxb14?list=PLzDe9mOi1K8rpwKQvMwGSscFQo9vNiJEs
DSE 數學 Core 天書 D 第3堂 (共2小時8分鐘) https://youtu.be/vVnyHSIHXJM?list=PLzDe9mOi1K8rpwKQvMwGSscFQo9vNiJEs
仿 Past Paper 系列 (DSE Probability 概率) (共1小時43分鐘) https://youtu.be/QOrwlA830pk?list=PLzDe9mOi1K8rpwKQvMwGSscFQo9vNiJEs
仿 Past Paper 系列 (DSE nCr, nPr) (共2小時29分鐘) https://youtu.be/tN6LGFfkcTc?list=PLzDe9mOi1K8rpwKQvMwGSscFQo9vNiJEs
DSE 數學 Core 天書 D 第4堂 (共2小時11分鐘) https://youtu.be/iPQbFbDM988?list=PLzDe9mOi1K8rpwKQvMwGSscFQo9vNiJEs
Past Paper Demo (太多,無法估計) https://youtu.be/41cdF_BqxME?list=PLzDe9mOi1K8rpwKQvMwGSscFQo9vNiJEs
------------------------------------------------------------------------------
DSE 數學 Core 天書 D 的內容︰
1 -- More about Probability 進階概率
2 -- Permutation (nPr) & Combination (nCr) 排列與組合
3 -- Statistics & Measures of Dispersion 統計及離差之量度
------------------------------------------------------------------------------
HKDSE 數學 Core 各天書 的內容︰ https://www.facebook.com/hy.publishing/photos/a.312736375489291.68655.198063650289898/933817946714461/?type=3&theater
HKDSE 數學 Core 特別快車班
28堂 (共7本天書) 完成整個 HKDSE 數學 Core
(中一至中六) 要考的所有課題,
適合任何考 HKDSE 的同學上課 (中四至中六都合適)
(p.s. Herman Yeung 所有天書,中英對照)
------------------------------------------------------------------------------
Please subscribe 請訂閱︰
https://www.youtube.com/hermanyeung?sub_confirmation=1
------------------------------------------------------------------------------
Blogger︰ https://hermanutube.blogspot.hk/2016/02/herman-yeung-main-menu.html
Facebook︰ https://www.facebook.com/hy.page
YouTube︰ https://www.youtube.com/HermanYeung
Instagram︰ https://www.instagram.com/hermanyeung_hy
------------------------------------------------------------------------------
interquartile range 在 Herman Yeung Youtube 的最佳解答
HKDSE Mathematics 數學天書 訂購表格及方法︰ http://goo.gl/forms/NgqVAfMVB9
課程簡介︰ https://youtu.be/Rgm7yUVG9cY
------------------------------------------------------------------------------
DSE 數學 Core 天書 D 第1堂 (共2小時1分鐘) https://www.youtube.com/playlist?list=PLzDe9mOi1K8rpwKQvMwGSscFQo9vNiJEs
DSE 數學 Core 天書 D 第2堂 (共2小時14分鐘) https://youtu.be/P5lqM4Bxb14?list=PLzDe9mOi1K8rpwKQvMwGSscFQo9vNiJEs
DSE 數學 Core 天書 D 第3堂 (共2小時8分鐘) https://youtu.be/vVnyHSIHXJM?list=PLzDe9mOi1K8rpwKQvMwGSscFQo9vNiJEs
仿 Past Paper 系列 (DSE Probability 概率) (共1小時43分鐘) https://youtu.be/QOrwlA830pk?list=PLzDe9mOi1K8rpwKQvMwGSscFQo9vNiJEs
仿 Past Paper 系列 (DSE nCr, nPr) (共2小時29分鐘) https://youtu.be/tN6LGFfkcTc?list=PLzDe9mOi1K8rpwKQvMwGSscFQo9vNiJEs
DSE 數學 Core 天書 D 第4堂 (共2小時11分鐘) https://youtu.be/iPQbFbDM988?list=PLzDe9mOi1K8rpwKQvMwGSscFQo9vNiJEs
Past Paper Demo (太多,無法估計) https://youtu.be/41cdF_BqxME?list=PLzDe9mOi1K8rpwKQvMwGSscFQo9vNiJEs
------------------------------------------------------------------------------
DSE 數學 Core 天書 D 的內容︰
1 -- More about Probability 進階概率
2 -- Permutation (nPr) & Combination (nCr) 排列與組合
3 -- Statistics & Measures of Dispersion 統計及離差之量度
------------------------------------------------------------------------------
HKDSE 數學 Core 各天書 的內容︰ https://www.facebook.com/hy.publishing/photos/a.312736375489291.68655.198063650289898/933817946714461/?type=3&theater
HKDSE 數學 Core 特別快車班
28堂 (共7本天書) 完成整個 HKDSE 數學 Core
(中一至中六) 要考的所有課題,
適合任何考 HKDSE 的同學上課 (中四至中六都合適)
(p.s. Herman Yeung 所有天書,中英對照)
------------------------------------------------------------------------------
Please subscribe 請訂閱︰
https://www.youtube.com/hermanyeung?sub_confirmation=1
------------------------------------------------------------------------------
Blogger︰ https://hermanutube.blogspot.hk/2016/02/herman-yeung-main-menu.html
Facebook︰ https://www.facebook.com/hy.page
YouTube︰ https://www.youtube.com/HermanYeung
Instagram︰ https://www.instagram.com/hermanyeung_hy
------------------------------------------------------------------------------
interquartile range 在 Interquartile Range (IQR): What it is and How to Find it 的相關結果
The interquartile range is a measure of where the “middle fifty” is in a data set. Where a range is a measure of where the beginning and end are in a set, ... ... <看更多>
interquartile range 在 四分位距(InterQuartile Range) | 逍遙文工作室 的相關結果
四分位距(interquartile range, IQR)。是描述統計學中的一種方法,以確定第三四分位數和第一四分位數的分別(即{Q1和Q3的差距)。 ... <看更多>
interquartile range 在 四分位距- 維基百科,自由的百科全書 的相關結果
四分位距(英語:interquartile range, IQR)。是敘述統計學中的一種方法,以確定第三四分位數和第一四分位數的分別(即 Q 1 , Q 3 {\displaystyle Q_{1},\ Q_{3}} ... ... <看更多>