Q: 哪時候才能出現一個能真的解決交通問題的人?
A:『老實說正確答案曾經出現過
就是硬底子出身的賀陳旦, 北捷出身
只可惜賀陳對於前瞻軌道計畫有專業堅持
於是就被換掉了
換掉之後螺絲鬆
先翻個普悠瑪
然後黑龍上台任命張政源改革台鐵
https://www.cna.com.tw/news/firstnews/201810300256.aspx
結果呢?
這個人今年初退休前, 出書自吹自擂
https://www.books.com.tw/products/0010880272
https://udn.com/news/story/7266/5159408
因為有樣學樣, 老闆就是這麼做, 還搞了兩本
https://www.books.com.tw/products/0010859322
https://www.books.com.tw/products/0010884491
台鐵那四本套書出版後三個月, 繼普悠瑪後連太魯閣也破功
證明只有表面功夫做好做滿, 就跟老闆一樣
這個政府如果還夠聰明的話
善後處理完
趕快把原本真正有專業的人請回位子
別再亂伸黑手指定高鐵路線, 自以為聰明
路線設計背後, 一堆抽象的離散數學要考慮
從來就不是你們這些文組政客所能理解的
那個光頭
有能力看懂小弟的部落格, 再來下指導棋
全白話不放數學符號, 但就怕你還是看不懂!』
Re: [新聞] 林佳龍臉書宣布:辭去交通部長一職 https://disp.cc/b/163-doed |新聞原文 https://disp.cc/b/163-dodi
同時也有2部Youtube影片,追蹤數超過2萬的網紅數學老師張旭,也在其Youtube影片中提到,【摘要】 今天這集一口氣講了不少東西,從韓信點兵到同餘符號的介紹,再到中國餘式定理,然後再到 RSA 密碼系統的介紹,最後再以中國餘式定理在 RSA 上的應用。這集一開始很輕鬆,但後面很陡,這也是我做這個系列的主要精神之一,短時間內把基本到進階甚至值得研究的課題串起來。 【本系列其他影片】 上集 ...
「離散數學符號」的推薦目錄:
- 關於離散數學符號 在 PTT Gossiping 批踢踢八卦板 Facebook 的最讚貼文
- 關於離散數學符號 在 每天努力Hack國家!士修的17時間 Facebook 的最佳貼文
- 關於離散數學符號 在 黃土條 Facebook 的精選貼文
- 關於離散數學符號 在 數學老師張旭 Youtube 的最讚貼文
- 關於離散數學符號 在 伊格言Egoyan Zheng Youtube 的最佳貼文
- 關於離散數學符號 在 [其他] 數學符號- 看板Math - 批踢踢實業坊 的評價
- 關於離散數學符號 在 命题的符号化 - YouTube 的評價
- 關於離散數學符號 在 高中數學討論區| 將在高中消失的符號H - Facebook 的評價
離散數學符號 在 每天努力Hack國家!士修的17時間 Facebook 的最佳貼文
看到一篇熱門分享的貼文《一堂物理課,了解貧富差距的根源》,在某個經濟學社團引發激烈的學術(?)討論。合先敘明,我認為這位老師非常認真,很用心將物理學、經濟學和哲學連結起來。
Liou YanTing:一堂物理課,了解貧富差距的根源
https://www.facebook.com/permalink.php?story_fbid=3403616276360627&id=100001368650813
不過,將猜拳遊戲與氣體動力論胡亂連結,反而模糊了一些真正能套用的概念。在談論分配正義時,將財富自由分配簡化為貧富不均的對立,然後傾向政府需要介入。這是一種非常危險的「正義」,我不認同這叫做所謂「科學與人文的思辨之旅」。
※本篇附圖是網友提供:「沒有要酸的意思但我真的想到這張圖。」
Part 1
電容放電曲線呈指數衰減,放射線衰退曲線呈指數衰減,跟美國財富分配圖是不是有異曲同工之妙呢?紫外光殺菌的曲線也呈指數衰減,是不是跟猜拳遊戲還有財富分佈一樣呢?
這是典型的物理半調子。物理模型的相似性,來自數學模式的相似性,與物理現象無關。我最常舉的例子是,測不準定理來自波的數學性質,與量子力學無關的訊號波,也會有測不準定理,這些都可以用傅立葉分析推導。量子力學的意義在於賦予測不準定理另外的物理詮釋。
但我發現很多物理系學生誤以為測不準定理一定是量子力學的現象,甚至到研究所階段都不知道電機系做訊號對測不準的理解,搞不好比物理系更深刻。這是一種鄙視鏈和反鄙視鏈。
所以,文中的波茲曼分布,來自統計的數學性質,並不建立在氣體動力論之上。更何況,指數遞減現象在各種科學和工程領域都很常見,這是自然的數學模式。根據奧坎剃刀原則,你扯進氣體動力論,只是騙不懂物理的外行人,跟你一起誤解物理罷了。
只要某一現象符合「衰減速度與值成比例」性質,寫下數學式和解微分方程的結果,就必然出現指數衰減曲線。我認為這是數學程度40分就能理解,物理程度大概要60分,才不會被表象迷惑的性質。
數學系的訓練是提取抽象模式,但一般數學系學生沉迷於符號推演之美,不去思考真實問題。物理系的訓練是建構近似模型,但一般物理系學生時常忘記模型僅是近似,並且把數學模式的必然性誤理解為巧妙的真理。
這個我特別有感,因為我當年同時修數學系和物理系的課,花了很多時間掙扎兩邊做學問方法不相容。物理系學生大三修完量子物理,幾乎不會去思考波動力學為何與矩陣力學等價,對修過微分方程和線性代數的我卻是很自然的事,然而數學系學生卻大多不會碰觸量子力學,無從思考他們所學理論意義何在。
原文作者所犯的其實是物理系常見通病,連許多教授都無法倖免。由於缺乏對物理模型和數學模式的深刻理解,只由結果腦補關聯性,甚至把沒有物理意義的中間演算,硬套憑空想像的詮釋,美其名為物理圖像。我大學時期聽到這類似是而非的所謂「物理解釋」都覺得異常痛苦。
例如上述的指數衰減,如果你問一個成績優秀的物理系學生,他或許會列舉許多指數衰減的物理現象,並讚嘆物理規律的美妙。但能回答下一個問題的學生就少了,為什麼這些現象都呈指數衰減?
這問題其實很簡單,只要回到微分方程去看,它的本質是衰減速度與值成比例,凡是符合此性質,就必然得到指數衰減的數學規律。物理是參透自然的數學語言,對自然的理解,很大一部分取決於語言能力的掌握,即為我所強調的數學模式。
Part 2
對岸的知乎有一個討論串,更深入地探討了分配遊戲的模擬。
房间内有 100 人,每人有 100 块,每分钟随机给另一个人 1 块,最后这个房间内的财富分布怎样? - 知乎
https://www.zhihu.com/question/62250384
我覺得這篇文章沒什麼問題,你注意到他說隨機遊走相當於求解離散空間的熱傳導方程,這是將一個待解問題轉化為一個已知問題,純粹是數學模式的相似性,他沒有將隨機遊走的分布解,建立在熱力學物理之上。
貧富不均為穩定態,均富為非穩定態,其反直覺的思維誤區在於,「平均分布」僅是「穩定分布」的一種少見子集,絕大多數情況的「穩定分布」不是「平均分布」。例如,二項分布、常態分布,都不是人人均等。
說到底,「平均值」僅是平均後的一個值,常態分布以平均值為對稱,不代表區間每個值一定均等。
統計分布的穩定態,取決於機率密度函數的長相。你可以批評這個數據模擬,誤用熱力學模型解釋人類經濟現象,真實世界不存在完全隨機的交換行為等等。但這些批評並不到位。
因為它只是一個經濟行為的玩具模型(toy model),遊戲規則決定機率密度函數,進而決定穩定態的分布,算出來正好是狄利克雷分布。又恰巧與離散空間的熱傳導方程相似,則是後話。
我們也可以用一些物理的解釋。大多數人誤解了,物理的結果是「穩定態」,本來就不一定是「均等態」。在這個實驗之中,什麼條件會出現均等態?或許是每分鐘隨機分配給所有人自已手上所有的財產,能量的交換不加任何限制。
所以反過來想,遊戲規則限制了每分鐘隨機只能給另一個人1塊,當我因為機率的偶然,手上財產從100元掉到80元,我就更往破產的機率傾斜了。反之,我從100元變為120元,但下一回合我仍然只要給別人1塊,我的優勢就隨時間演化變大了。
我個人特別喜歡它後續做的「允許負債」模擬,以及「努力多1%競爭優勢」模擬,令人慶幸沒有出現反直覺的悲劇結果。自由競爭之下努力有意義,相當勵志,不是嗎?
經濟學的解釋,當然不能只是「要求平等均富的社會本身正是反自然的存在」,那僅僅只是「限定遊戲規則之下貧富不均是統計的穩定態」。
至於這個遊戲規則,離真實世界有多遠,當然很遠,但咱們學經濟的講機會成本。你不用這個遊戲規則,用另一個遊戲規則,會不會發生一樣的貧富不均結果?看起來很有可能會,但沒證據我不確定,有一說一才是科學精神。
或許在任何遊戲規則之下,只要不脫離「每分鐘隨機給出的數額有限制」的基本假設,都會跑出貧富不均的分布結果。而這個基本假設,在真實世界中也不可能捨棄,那麼這個數據模擬就有其參考價值。我們可以說,不論任何制度必然會有貧富不均的狀況出現,這才是最正常的現象。
參考閱讀:
巴斯夏的蠟燭工坊:今天臉書有一篇遭到瘋傳的經濟學相關文章,堪稱經濟學程度的照妖鏡
https://www.facebook.com/329896911051695/photos/a.358878471486872/642324269808956/?type=3
(我貢獻了 巴斯夏的蠟燭工坊 這篇文章的某些段落。)
離散數學符號 在 黃土條 Facebook 的精選貼文
看到一篇熱門分享的貼文《一堂物理課,了解貧富差距的根源》,在某個經濟學社團引發激烈的學術(?)討論。合先敘明,我認為這位老師非常認真,很用心將物理學、經濟學和哲學連結起來。
Liou YanTing:一堂物理課,了解貧富差距的根源
https://www.facebook.com/permalink.php?story_fbid=3403616276360627&id=100001368650813
不過,將猜拳遊戲與氣體動力論胡亂連結,反而模糊了一些真正能套用的概念。在談論分配正義時,將財富自由分配簡化為貧富不均的對立,然後傾向政府需要介入。這是一種非常危險的「正義」,我不認同這叫做所謂「科學與人文的思辨之旅」。
※本篇附圖是網友提供:「沒有要酸的意思但我真的想到這張圖。」
Part 1
電容放電曲線呈指數衰減,放射線衰退曲線呈指數衰減,跟美國財富分配圖是不是有異曲同工之妙呢?紫外光殺菌的曲線也呈指數衰減,是不是跟猜拳遊戲還有財富分佈一樣呢?
這是典型的物理半調子。物理模型的相似性,來自數學模式的相似性,與物理現象無關。我最常舉的例子是,測不準定理來自波的數學性質,與量子力學無關的訊號波,也會有測不準定理,這些都可以用傅立葉分析推導。量子力學的意義在於賦予測不準定理另外的物理詮釋。
但我發現很多物理系學生誤以為測不準定理一定是量子力學的現象,甚至到研究所階段都不知道電機系做訊號對測不準的理解,搞不好比物理系更深刻。這是一種鄙視鏈和反鄙視鏈。
所以,文中的波茲曼分布,來自統計的數學性質,並不建立在氣體動力論之上。更何況,指數遞減現象在各種科學和工程領域都很常見,這是自然的數學模式。根據奧坎剃刀原則,你扯進氣體動力論,只是騙不懂物理的外行人,跟你一起誤解物理罷了。
只要某一現象符合「衰減速度與值成比例」性質,寫下數學式和解微分方程的結果,就必然出現指數衰減曲線。我認為這是數學程度40分就能理解,物理程度大概要60分,才不會被表象迷惑的性質。
數學系的訓練是提取抽象模式,但一般數學系學生沉迷於符號推演之美,不去思考真實問題。物理系的訓練是建構近似模型,但一般物理系學生時常忘記模型僅是近似,並且把數學模式的必然性誤理解為巧妙的真理。
這個我特別有感,因為我當年同時修數學系和物理系的課,花了很多時間掙扎兩邊做學問方法不相容。物理系學生大三修完量子物理,幾乎不會去思考波動力學為何與矩陣力學等價,對修過微分方程和線性代數的我卻是很自然的事,然而數學系學生卻大多不會碰觸量子力學,無從思考他們所學理論意義何在。
原文作者所犯的其實是物理系常見通病,連許多教授都無法倖免。由於缺乏對物理模型和數學模式的深刻理解,只由結果腦補關聯性,甚至把沒有物理意義的中間演算,硬套憑空想像的詮釋,美其名為物理圖像。我大學時期聽到這類似是而非的所謂「物理解釋」都覺得異常痛苦。
例如上述的指數衰減,如果你問一個成績優秀的物理系學生,他或許會列舉許多指數衰減的物理現象,並讚嘆物理規律的美妙。但能回答下一個問題的學生就少了,為什麼這些現象都呈指數衰減?
這問題其實很簡單,只要回到微分方程去看,它的本質是衰減速度與值成比例,凡是符合此性質,就必然得到指數衰減的數學規律。物理是參透自然的數學語言,對自然的理解,很大一部分取決於語言能力的掌握,即為我所強調的數學模式。
Part 2
對岸的知乎有一個討論串,更深入地探討了分配遊戲的模擬。
房间内有 100 人,每人有 100 块,每分钟随机给另一个人 1 块,最后这个房间内的财富分布怎样? - 知乎
https://www.zhihu.com/question/62250384
我覺得這篇文章沒什麼問題,你注意到他說隨機遊走相當於求解離散空間的熱傳導方程,這是將一個待解問題轉化為一個已知問題,純粹是數學模式的相似性,他沒有將隨機遊走的分布解,建立在熱力學物理之上。
貧富不均為穩定態,均富為非穩定態,其反直覺的思維誤區在於,「平均分布」僅是「穩定分布」的一種少見子集,絕大多數情況的「穩定分布」不是「平均分布」。例如,二項分布、常態分布,都不是人人均等。
說到底,「平均值」僅是平均後的一個值,常態分布以平均值為對稱,不代表區間每個值一定均等。
統計分布的穩定態,取決於機率密度函數的長相。你可以批評這個數據模擬,誤用熱力學模型解釋人類經濟現象,真實世界不存在完全隨機的交換行為等等。但這些批評並不到位。
因為它只是一個經濟行為的玩具模型(toy model),遊戲規則決定機率密度函數,進而決定穩定態的分布,算出來正好是狄利克雷分布。又恰巧與離散空間的熱傳導方程相似,則是後話。
我們也可以用一些物理的解釋。大多數人誤解了,物理的結果是「穩定態」,本來就不一定是「均等態」。在這個實驗之中,什麼條件會出現均等態?或許是每分鐘隨機分配給所有人自已手上所有的財產,能量的交換不加任何限制。
所以反過來想,遊戲規則限制了每分鐘隨機只能給另一個人1塊,當我因為機率的偶然,手上財產從100元掉到80元,我就更往破產的機率傾斜了。反之,我從100元變為120元,但下一回合我仍然只要給別人1塊,我的優勢就隨時間演化變大了。
我個人特別喜歡它後續做的「允許負債」模擬,以及「努力多1%競爭優勢」模擬,令人慶幸沒有出現反直覺的悲劇結果。自由競爭之下努力有意義,相當勵志,不是嗎?
經濟學的解釋,當然不能只是「要求平等均富的社會本身正是反自然的存在」,那僅僅只是「限定遊戲規則之下貧富不均是統計的穩定態」。
至於這個遊戲規則,離真實世界有多遠,當然很遠,但咱們學經濟的講機會成本。你不用這個遊戲規則,用另一個遊戲規則,會不會發生一樣的貧富不均結果?看起來很有可能會,但沒證據我不確定,有一說一才是科學精神。
或許在任何遊戲規則之下,只要不脫離「每分鐘隨機給出的數額有限制」的基本假設,都會跑出貧富不均的分布結果。而這個基本假設,在真實世界中也不可能捨棄,那麼這個數據模擬就有其參考價值。我們可以說,不論任何制度必然會有貧富不均的狀況出現,這才是最正常的現象。
參考閱讀:
巴斯夏的蠟燭工坊:今天臉書有一篇遭到瘋傳的經濟學相關文章,堪稱經濟學程度的照妖鏡
https://www.facebook.com/329896911051695/photos/a.358878471486872/642324269808956/?type=3
(我貢獻了 巴斯夏的蠟燭工坊 這篇文章的某些段落。)
離散數學符號 在 數學老師張旭 Youtube 的最讚貼文
【摘要】
今天這集一口氣講了不少東西,從韓信點兵到同餘符號的介紹,再到中國餘式定理,然後再到 RSA 密碼系統的介紹,最後再以中國餘式定理在 RSA 上的應用。這集一開始很輕鬆,但後面很陡,這也是我做這個系列的主要精神之一,短時間內把基本到進階甚至值得研究的課題串起來。
【本系列其他影片】
上集 👉 從高中機率抽球問題,講到大學機率論的二項分布與卜松分布,最後教你如何開除員工 (https://youtu.be/gN8TWD1hvfw)
下集 👉 從高中數學排列組合的加法原理和乘法原理,講到大學離散數學的圖論的五色定理證明 (https://youtu.be/bhB5hubDgss)
【版權宣告】
本影片版權為張旭 (張舜為) 老師所有
嚴禁用於任何商業用途⛔
如果有學校老師在課堂使用我的影片的話
請透過以下聯絡方式通知我讓我知道,謝謝
FB:https://www.facebook.com/changhsumath
IG:https://www.instagram.com/changhsumath
![post-title](https://i.ytimg.com/vi/NkvCZ8qJ34w/hqdefault.jpg)
離散數學符號 在 伊格言Egoyan Zheng Youtube 的最佳貼文
為何一個酒鬼可以寫出這麼厲害的小說?
#瑞蒙卡佛 #美國小說 #文學
───
☞〈所有東西都黏在我們身上〉全文連結|https://www.egoyanzheng.com/single-post/2019/12/25/所有東西都黏在我們身上──瑞蒙‧卡佛
☞Instagram|https://www.instagram.com/egoyanzheng/
☞請記得按讚、留言、分享、訂閱、小鈴鐺喔。
☞請記得按讚、留言、分享、訂閱、小鈴鐺喔。
────
你相信感情有保鮮期嗎?已經腐壞的感情,還可能更壞嗎?有什麼比失戀還更慘的?這是我們今天的主題,來自伊格言老師的文章〈所有東西都黏在我們身上〉,你可以在影片下方的頻道資料處找到全文連結。
上一集中我們講述了瑞蒙‧卡佛的短篇小說〈為什麼你們不跳個舞?〉,一對年輕小情侶(男孩與女孩)遇上一位在車道上變賣家具的中年男子。頹廢的中年男子幾乎是無條件接受小情侶的殺價,自暴自棄,一路慘賠到底。
這對撿到便宜的小情侶,開了張購買清單給男人。而後男人便邀請男孩和女孩對酌(他手邊正好有剛買來的威士忌和啤酒),又打開了電唱機,悠閒地聽起音樂。男人帶著些許醉意,提議:「為什麼你們不跳個舞」。Why Don’t You Dance?小情侶說:Why not?
於是他們真的相擁跳了支舞。先是女孩和男孩,而後是女孩和男人。臉頰相貼的時刻(伊格言說,「他們感受彼此的體溫與氣息,於一短暫之瞬刻,彷彿依戀,那陰魂不散的,曾經的愛情」),男人輕聲給予祝福(「希望妳喜歡妳的床」),女孩也溫柔回應(「你一定是為了什麼事情很急,」她說)。
這女孩還滿體貼的對吧?不,對卡佛而言,無論是體貼或溫柔都易於朽壞,帶著殘酷的保存期限。小說的結尾是這樣的:
幾個星期後,她說:「這男人大約中年,他所有的家當都擺在院子裡。我們真的醉了,還跳舞呢。他放唱片給我們聽,你們看這台電唱機,還有這些破舊的唱片。你們能想像這些爛東西嗎?」她不停地說,告訴了每個人。不只如此,她還想辦法把這件事流傳出去,但是過了一陣子,她就放棄了。
小說結束。在此一萍水相逢的經歷中,所有曾短暫存在的善意或溫柔皆被摧毀(女孩殘忍地說:「你們能想像這些爛東西嗎?」),男人的哀傷自棄維持原貌,而女孩和男孩也終究只是撿了個便宜而已。伊格言如此分析:
他們所獲得的並不比那些便宜的二手貨更少或更多──它們就是些二手貨,陳舊,酸腐,如同他們多年以後的愛情(以及男人現在失敗的愛情),注定疲累困乏。So why don’t you dance?Why not?那只是為期一個小時的小小奇遇,笑料,某種談資;此刻賞味期限已過,甚至連當個談資的資格也沒有,因為那不夠聳動辛辣,也沒人想聽;所以,「過了一陣子她就放棄了」。
一切終將朽壞──這是卡佛小說的重要主題。比失戀更慘的是,對失戀的體貼不是真的,而你失戀的故事甚至還沒人想聽。同樣的主題出現在另一則短篇〈所有東西都黏在他身上〉中。。。。。。。
─────
伊格言,小說家、詩人,《聯合文學》雜誌2010年8月號封面人物。
著有《噬夢人》、《與孤寂等輕》、《你是穿入我瞳孔的光》、《拜訪糖果阿姨》、《零地點GroundZero》、《幻事錄:伊格言的現代小說經典十六講》、《甕中人》等書。
作品已譯為多國文字,並於日本白水社、韓國Alma、中國世紀文景等出版社出版。
曾獲聯合文學小說新人獎、自由時報林榮三文學獎、吳濁流文學獎長篇小說獎、華文科幻星雲獎長篇小說獎、中央社台灣十大潛力人物等;並入圍英仕曼亞洲文學獎(Man Asian Literary Prize)、歐康納國際小說獎(Frank O'Connor International Short Story Award)、台灣文學獎長篇小說金典獎、台北國際書展大獎、華語文學傳媒大獎年度小說家等獎項。
獲選《聯合文學》雜誌「20位40歲以下最受期待的華文小說家」;著作亦曾獲《聯合文學》雜誌2010年度之書、2010、2011、2013博客來網路書店華文創作百大排行榜等殊榮。
曾任德國柏林文學協會(Literarisches Colloquium Berlin)駐會作家、香港浸會大學國際作家工作坊(IWW)訪問作家、中興大學駐校作家、成功大學駐校藝術家、元智大學駐校作家等。
Readmoo專訪:
https://news.readmoo.com/2019/03/21/190321-lonelieness/
香港明報專訪:
https://news.mingpao.com/pns/副刊/artic...
────
小說是什麼?我認為,好的小說是一則猜想──像數學上「哥德巴赫的猜想」那樣的猜想。猜想什麼?猜想一則符號系統(於此,是文字符號系統)中的可能真理。這真理的解釋範圍或許很小,甚至有可能終究無法被證明(哥德爾的不完備定理早就告訴我們這件事);但藝術求的從來便不是白紙黑字的嚴密證明,是我們閱讀此則猜想,從而無限逼近那則真理時的智性愉悅。如若一篇小說無法給我們這樣的智性,那麼,它就不會是最好的小說。
是之謂小說的智性。───伊格言
![post-title](https://i.ytimg.com/vi/-gluqGlCkLU/hqdefault.jpg)
離散數學符號 在 命题的符号化 - YouTube 的必吃
![影片讀取中](/images/youtube.png)
播放列表名称: 离散数学 01基础知识课时1.1 集合与序列1.2 数论基础1.3 计数基础1.4 布尔矩阵及其运算02命题逻辑课时2.1 命题逻辑的基本概念2.2 命题 ... ... <看更多>
離散數學符號 在 高中數學討論區| 將在高中消失的符號H - Facebook 的必吃
將在高中消失的符號H 寫這篇文章的目的, 是希望教數學的朋友, 繼續使用H符號, 在高中太方便, 大學如果學"和差分"的朋友, 學"離散數學"的朋友,他會發現這個符號太 ... ... <看更多>
離散數學符號 在 [其他] 數學符號- 看板Math - 批踢踢實業坊 的必吃
不好意思這個問題我不知道會不會很蠢或可不可以po這邊
不行的話我會再刪掉
這是在一篇密碼學的論文裡出現的數學符號
應該是跟離散數學相關的
他用了Z下標n
這個我知道是 { [0], [1], ... ,[n-1] } 這個集合
也就是對所有整數做 congruence modulo n 形成的集合
但這個符號再加上一個上標*是什麼意思?
就是Z下標 n 上標 *
google 了很久還是找不到這個符號代表的意思....
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 111.184.38.139
※ 文章網址: https://www.ptt.cc/bbs/Math/M.1420808429.A.667.html
謝謝兩位願意回答我的問題
不過你們的答案看起來應該是一樣的只是表達跟稱呼的方法不一樣?
舉例的話例如說n = 9
那 Z 下標 9 上標 *兩位的答案應該都是 {1, 2, 4, 5, 7, 8} 這樣對嗎?
※ 編輯: lock5208 (111.184.38.139), 01/09/2015 21:28:38
好的我會再看看相關的教科書
謝謝你們的幫忙!!
※ 編輯: lock5208 (111.184.38.139), 01/09/2015 21:47:07
... <看更多>