創新工場和BCG咨詢合作的「+AI改造者」系列:看看無人機技術起家的極飛,如何賦能農業生產全環節,提升全球農業生產效率。
改造者系列:農業「+AI」全環節守護新疆棉花
近期,創新工場聯合BCG波士頓咨詢旗下亨德森智庫,推出「AI融合產業:『改造者』如何促進AI普惠」系列研究。人工智能在中國大陸有著明確的落地應用場景,大量的AI企業活躍於這些垂直場景中,我們定義這些企業為「改造者」。「改造者」通過傳授其AI技術和垂直行業理解,極大地打破了傳統企業應用AI的瓶頸。
作為擅於趨勢前瞻的TechVC,創新工場長期看好AI領域,深入佈局,至今已經投出了7只AI獨角獸。在系列研究中,我們采訪了數家創新系AI企業,通過這些「改造者」的視角,探究傳統企業擁抱AI的範式與路徑。
創新工場投資的極飛科技是一家致力於未來農業的AI科技公司,極飛將無人機、機器人和傳感器部署在稻田、麥田和棉花田裏,用技術賦能農業中的播種、農藥噴灑、栽種管理、甚至天氣監測環節。用於作物噴灑的極飛科技R150農業無人車已經被推廣到了英國,應用在蘋果、草莓、黑莓等多種經濟作物的種植流程中。
在采訪中,極飛科技聯合創始人龔檟欽表示,AI在農業的應用才剛剛開始,未來極飛會探索更多AI和農業的融合,例如用AI來賦能優化作物模型(crop modelling),幫助識別作物生長過程中的不確定因素,從而實現提前預警和判斷。以下:
■系列導讀
本系列由BCG亨德森智庫與創新工場董事長兼首席執行官李開復博士帶領的創新工場團隊共同推出,圍繞「AI融合產業:『改造者』1如何促進AI普惠」的課題,我們致力於探究傳統企業在應用AI過程中的關鍵要素與合作夥伴,以及傳統企業擁抱AI的範式與路徑。
在農業領域,隨著機器自動化、機器視覺、物聯網等技術的發展,農業的提質增效和轉型升級也被不斷加速。以極飛科技為代表的一批農業科技企業,通過無人機、智慧農業系統等科技賦能,使得傳統的農業勞動更加高效、環保、節能。
1 「改造者」通過傳授其AI技術和垂直行業理解,極大地削弱了傳統企業應用AI的瓶頸,充當產業中傳統企業應用AI的橋樑。「改造者」包括AI企業與成功轉型AI的傳統企業。
■本期受訪嘉賓:龔檟欽
極飛科技將無人機、機器人、自動駕駛、人工智能、物聯網等技術帶進農業生產,通過構建無人化智慧農業生態,讓農業進入自動化、精准高效的 4.0時代。
龔檟欽是極飛科技聯合創始人,2018年福布斯中國「30 under 30」封面人物。龔檟欽曾任鳳凰衛視特約海外記者、國家地理製片人。龔檟欽先生擁有悉尼大學學士學位、巴黎九大與清華大學聯合博士學位在讀。
■對談實錄
Q1:極飛科技最早以無人機技術起家,後來為何選擇進入農業這一垂直領域?
龔檟欽:極飛科技以無人機航模控制器起家,最開始的時候我們曾嘗試過把無人機技術帶到電力巡線、安防、南極科考、物流等諸多領域,但很多領域的應用很難市場化,比如物流或電力巡線在當時都受到市場規模和法律法規的制約,難以發揮無人化技術的最大價值。
2013年9月,由於機緣巧合,極飛科技開始探索農業這一領域的無人機應用。我們發現,有客戶購買極飛的飛控之後進行改裝,拿到新疆去做航拍,還有許多人看到極飛之後在考慮用無人機做農藥噴灑。於是當月我們也一起走訪了新疆。9月正值棉田收穫期,我們卻看到大量農民背著藥箱,忍受著刺鼻的氣味在噴灑農藥,原因就在於新疆已經請不到采棉工了,需要農民噴灑脫葉劑來保證棉花同步成熟,再由大型采棉機統一采收。但是人工噴灑脫葉劑的效率非常低下,而用拖拉機噴灑又會軋壞棉花導致減產。
當時的新疆不僅缺乏采棉工,連噴灑脫葉劑的人工也請不到了。隨著城鎮化的發展,大量人口從農村流入城市,從前每年秋天新疆會有六七十萬人坐著綠皮火車從四川、河南、陝西來采棉花,如今這樣的畫面已難以再現。新疆出現了勞動力供給的缺口,而這也正是機器和技術能夠賦能的地方,就采棉催熟而言,要求脫葉劑的噴灑量不高,無人機這種空中飛行的機器有著天然的優勢——能夠在空中精准、均勻地噴灑,很大程度上減少人力並提高效率。不只是采摘,從播種到收穫的全流程中,機器人能高效地完成許多任務,包括播種、施肥、除草、除蟲等等,無人機能夠極大地提升農業生產效率,尤其在生產期較短的地域迅速提高單位時間的產量。由此,無人機能為農民釋放更多產能,一個人能管理的農田更大,即技術賦能土地規模化集中,而土地規模化之後農民對機器的需求也更大,從而進入「技術加速資源有效整合」的正向循環。
目前,極飛科技的無人機已經覆蓋了新疆機采棉面積的一半以上2,從棉花延伸到了水稻、小麥等需要大量人工的作物,從新疆延伸到了東北、雲南等全國大部分地域。
我們一直相信,當腦海裏有一項技術的時候,你要為技術選擇一個行業,選擇用技術來做什麼事。
2截至2020年10月,極飛科技農業無人機棉花脫葉劑作業面積占新疆機采棉面積的一半以上。
Q2:極飛在賦能農業的過程中是否遇到過什麼挑戰?極飛是如何應對的?
龔檟欽:在工業裏,規模化生產的工廠是工業自動化的天然載體,但在農業裏,農戶的規模差異很大,許多農戶的農田本身很小,對於機器應用能帶來的成本優化是無感的,這就涉及到「技術下鄉的微觀載體是誰」的問題。
極飛最早發現了這樣一群人,他們是縣城裏做婚慶攝影的攝影師,隨著航拍變得越來越容易,他們面臨著更加激烈的競爭。但是農民不會用無人機,極飛就請這些攝影師,或者說飛手,去幫農民打農藥。飛手發現農業用無人機的頻次高得多,市場又大,農民與他們之間也存在著比較大的技術差距,於是這些飛手們便成為了極飛下鄉的第一批「用戶」,架起農民和農業科技之間的橋樑。
過了一段時間後,這批飛手開始感到困惑,他們並不懂農業、不懂種植,也無法識別農藥的真假,於是另一批群體出現了——農資店。農資店主往往很懂農戶,很清楚周邊農戶種植的作物種類、規模,也有農戶的熟人網絡,由農資店來推銷無人機、提供打藥服務等,就會容易得多。農資店就這麼成為了極飛的「經銷商」。
兩三年後,隨著無人機、無人車等設備的滲透更高、覆蓋範圍更大,農戶開始出現對無人機維修的售後需求,農機商便成了我們的夥伴。農機商有更大的店面,有展廳、有維修車間,就像是汽車的4S店。他們也懂農業、有銷售團隊和培訓團隊,農機商就成了極飛「更大型的經銷商」。
到這裡,整個產業鏈已經連接上了,商業模式被驗證了——農機商可以幫我們推廣農機,農資店、無人機飛手可以幫助培訓。對極飛來說,分銷商就是農機商,經銷商就是農資商和飛手。
Q3:極飛自然衍生的渠道網絡非常有趣,從更大的農業產業鏈角度來看,極飛如何賦能農業產業鏈中的傳統企業?
龔檟欽:農業產業鏈中的企業可以簡化為三大類:作物科學公司、農業技術公司、食品與供應鏈公司。作物科學公司包括拜耳、中化等,研究農藥、化肥、種子,負責為農業提供生產資料。食品與供應鏈公司包括拼多多、百果園、盒馬等,把農產品變為商品,進行流通並銷售。農業技術公司負責農產品、農作物的生長管理,通過技術來幫助農業提升效率,極飛就屬於這一類。我們有一個說法是極飛幫助了農產品進行「光合作用」,通過抵抗農業生產過程中由於氣候、資本、勞動力等多方因素導致的不確定性。
農業技術公司位於另兩類公司中間,起到連接上下游的作用。比如作物科學公司想知道種子的生產效果、農藥的效果,可以通過極飛的種植管理記錄來做調研,從而優化下一代產品。比如農產品超市想采購無過量農藥的水果,可以調取極飛植保服務記錄來識別更高品質的水果供應商。可以看出,除了提升效率之外,極飛還提升了農業的透明度和可追溯性。相應地,在終端也會產生更高的價值回報,農民能獲得更多收入,消費者願意為此買單。
Q4:極飛對未來的發展規劃是什麼?會繼續深耕農業還是拓展更多行業應用?
龔檟欽:極飛選擇深耕農業,因為對於已經有七年技術和經驗積累的我們來說,再造更多其他類型的農業機器人、無人機,或者結合材料科學、結構設計優化農業機械,再或者把AI演算法嵌入農業機器,並不會太困難,但別的行業企業要進入農業是很難的,農業的行業壁壘還是很高的。
而且,在農業中AI的應用剛剛開始,未來我們可以探索更多AI和農業的融合,比如用AI來賦能優化作物模型(crop modelling),幫助識別作物生長過程中的不確定因素,從而實現提前預警和判斷;又比如探索作物科學,用深度學習來挖掘作物性狀,再通過優化生長管理極大地提升作物產量或品質,這些都是未來的方向。
■要點回顧
1、在垂直產業生態中,AI企業大可以自建網絡,根據協同性和互補性來決定網絡中的生態夥伴。隨著佈局下沉和戰線拉長,構建網絡並不會容易,AI企業需要從挑戰中找尋機遇,用更縱深的網絡推動AI與產業持續交織。
2、AI企業能幫助傳統行業「化不確定為確定」,極大地提升給定資源條件下的生產效率,加速「光合作用」。而傳統企業應當主動與AI企業共同暢想未來,重新想像AI將為行業帶來什麼價值和機遇。
3、AI企業可以在垂直領域中探索將業務與AI以及生物、材料等諸多技術進行融合,持續深耕垂直領域。
視覺識別定義 在 Facebook 的精選貼文
創新工場和BCG咨詢合作的「+AI改造者」系列: 看看多面手鎂伽如何由點到面,用機器人和自動化賦能生命科學、製造和零售業。
改造者系列:將核酸檢測提效40倍的自動化變革推手 -- 本文来自BCG微信公眾號,經授權轉載。
近期,創新工場聯合BCG波士頓咨詢旗下亨德森智庫,推出「AI融合產業:『改造者』如何促進AI普惠」系列研究。人工智能在大陸有著明確的落地應用場景,大量的AI企業活躍於這些垂直場景中,我們定義這些企業為「改造者」。「改造者」通過傳授其AI技術和垂直行業理解,極大地打破了傳統企業應用AI的瓶頸。
作為擅於趨勢前瞻的TechVC,創新工場長期看好AI領域,深入佈局,至今已經投出了7隻AI獨角獸。在系列研究中,我們采訪了數家創新系AI企業,通過這些「改造者」的視角,探究傳統企業擁抱AI的範式與路徑。
創新工場投資的鎂伽是大陸領先的高科技公司,成立於2016年,專注于機器人和人工智能技術的研發並將其深度融合于行業應用,提供從終端到雲端的產品與服務,賦能生命科學、先進製造等領域的智能變革,同步探索在智能零售等場景的創新應用。疫情期間,鎂伽為核酸檢測的應用需求提供了一系列高通量病毒核酸檢測解決方案,全程無人工參與,「樣品進、結果出」的全自動化,最大化保證結果的準確,效率相比人工提升40倍以上,最大可能降低了人工實驗過程中的感染風險。
2021年,鎂伽正式宣佈其自主研發的中國首家通用型智能自動化生物實驗室——鎂伽鯤鵬實驗室一期在北京正式落成,同時也在上海、蘇州開始佈局滿足不同功能的自動化生物實驗室,預計於2022年陸續投入使用。鯤鵬實驗室將專注于細胞基因編輯、高通量藥物篩選、合成生物學等領域的研究,致力於打造次世代的生命科學基礎設施,提高生命科學研發和生產效率,賦能行業融合創新,引領即將到來的生物學革命。
在采訪中,鎂伽認為AI應用企業要從垂直行業的實際問題出發,通過儲備和培養大量複合型人才,做到「比客戶更懂業務」。以下:
■系列導讀
本系列由BCG亨德森智庫與創新工場董事長兼首席執行官李開復博士帶領的創新工場團隊共同推出,圍繞「AI融合產業:『改造者』1如何促進AI普惠」的課題,我們致力於探究傳統企業在應用AI過程中的關鍵要素與合作夥伴,以及傳統企業擁抱AI的範式與路徑。
在上篇中,我們接觸了提供端到端AI醫藥平臺的英矽智能,在今天的文章中,我們將進一步瞭解在生命科學、先進製造與智能零售等創新領域提供智能自動化技術與產品的高科技公司,即「改造者」——鎂伽科技。
1 「改造者」通過傳授其AI技術和垂直行業理解,極大地打破了傳統企業應用AI的瓶頸,充當產業中傳統企業應用AI的橋樑。「改造者」包括AI企業與成功轉型AI的傳統企業。
鎂伽是中國大陸領先的高科技公司,憑藉卓越的智能自動化技術與產品,實現行業創新突破和深度融合,致力於構建智能社會,賦能生命科學、先進製造等領域的智能變革,同步探索在智能零售等場景的創新應用。
■對談實錄
Q1:鎂伽為生命科學、零售和製造業提供AI解決方案,三個行業跨度很大,鎂伽如何進行賽道選擇?在發展過程中如何增進行業理解?
鎂伽:鎂伽是以機器人和自動化技術起家的,但在服務客戶的過程中,我們發現客戶需要的不只是機器人本體或自動化設備,還要結合行業需求痛點的解決方案。生命科學和線下零售都是市場容量很大、增速很快的行業,但自動化和智能化的滲透程度還很低,急切地需要提升生產力,因此我們選擇進入這些賽道。
這三個賽道看似跨度很大,但其實底層技術是相通的。比如人工智能技術可以用於晶圓的缺陷檢測,也可以用在藥物篩選實驗中的細胞培養和克隆挑選。鎂伽開發了許多通用的基礎底層技術作為支撐,比如IntellVega通用視覺平臺已經應用於工業領域線上視覺檢測以及生命科學領域的藥物篩選,鎂伽還有一個技術中台MegaCloud,集合了跨行業的後臺數據,能夠支援鎂伽在不同領域的各項業務。
當然,對於一線業務來說,使用人工智能或者自動化的形態是完全不同的。鎂伽通過儲備和培養大量複合型人才做到「比客戶更懂他的業務」,以體現鎂伽的專業性和技術領先性。以生命科學領域為例,鎂伽不只有人工智能算法科學家,還有包括幹細胞、類器官、合成生物學、免疫學、病毒學等方向的科學家,既有來自CRO、IVD和藥企的專業人才,也有懂市場營銷的專家。由於團隊的多樣性和複合性,鎂伽內部也建立了充分的互相培訓機制,加強團隊之間的磨合與學習。
同時,現代生物學現在已經成了大數據科學,人工智能的應用是大勢所趨。鎂伽在助力生命科學領域轉型的過程,通過智能自動化技術,説明客戶把非常複雜的生物學實驗標準化、自動化和數字化。鎂伽在兩個方面説明生命科學的客戶,一是用行業領先的高效自動化系統説明客戶快速產生海量的多維度實驗數據;二是用鎂伽人工智能平臺説明客戶對生物數據進行模型構建和關聯性分析,進而指導實驗的持續優化。
另外,鎂伽也是少有的在生命科學領域搭建了完整的生物學自動化實驗室的企業,能夠融合我們自己的自動化和人工智能技術。客戶親眼看到我們的實驗室之後都會很受震撼,認識到我們做的事情非常前沿,他們也很想加入。這就使得鎂伽和其他生命科學領域的硬件設備廠家區分開來。
鎂伽甚至發現,從過去幾年到如今,有不少AI技術公司找到我們,希望借鑒我們的垂直行業經驗。這些團隊往往有很強的AI算法能力,但是缺乏數據、缺乏應用數據的方式。以藥物篩選為例,鎂伽可以做到在實驗室設計方案之初就考慮到收集哪些關鍵數據並使其很好地滿足機器學習算法的要求,從而在實驗過程中自動採集證據以證明細胞安全且來源單一,滿足監管的要求。這是鎂伽相比於其他AI公司的獨到優勢。
在開發解決方案的過程中,鎂伽一直堅持從業務問題出發,首先找到高價值的應用點,再把點串成線,由線鋪到面。
Q2:就鎂伽的觀察而言,傳統企業應用AI有哪些共性問題?鎂伽是如何解決的?
鎂伽:傳統企業首先對AI技術能夠解決什麼問題比較模糊,也不太能理解AI是如何解決問題的。例如對AI如何能替代人工檢查、或者提升產品良率都不理解,因此很難提煉他們對AI的需求。鎂伽需要引導傳統企業的決策者來梳理業務流程,明確行業的特定痛點,從而制定解決方案,並計算和衡量自動化和AI能夠為企業帶來的經濟價值。
同時,傳統企業往往也缺乏高質量的數據,或者有數據但並未標記、數據不標準,無法有效地投入AI應用。傳統企業還缺乏AI人才,自動駕駛和視頻監控行業的人才和技術可能相對更多,但在傳統製造、生物醫藥這些行業,AI人才和技術是較為欠缺的。鎂伽建立了高效的數據獲取、自動化模型訓練和高精度上線部署的AI閉環,軟硬件團隊和測試團隊也做了充分的磨合,可以極大地提升傳統企業研發應用AI的效率。否則,從模型搭建、數據清洗到模型訓練、結果分析部署等等諸多環節,對傳統企業而言都是費時費力甚至難以為繼的。
鎂伽還會幫傳統企業搭建懂AI的團隊和建立完整的數據體系,包括説明傳統企業的團隊理解如何提煉數據、要采集並標注什麼數據等等。幫助傳統企業建立一支懂得AI應用的團隊有利於傳統企業的持續AI賦能。鎂伽內部建立了一個共有技術平臺,以機器人控制、2D和3D視覺、深度學習為核心的IntellVega平臺,及為用戶提供物聯網、SaaS線上集群服務和大數據分析等核心的 MegaCloud平臺,通過專業的開發團隊為客戶提供高效、智能化的整體解決方案,而傳統企業只需要提煉他們自身對產品工藝、質量的要求就可以了。
■要點回顧
1、「改造者」需要從垂直行業的業務問題出發,打造複合型團隊(既懂AI又懂垂直行業的專業人才),並加強團隊融合,實現「比客戶更懂業務」。
2、一流的「改造者」不只是提供產品和解決方案而已,還應當幫助傳統企業驅動變革管理,幫助識別和定義問題和需求,驅動認知轉變並提高員工技能,從而使AI應用在長期可持續。
■本期內容來自BCG對話鎂伽首席科學家王承志博士、首席技術官丁新宇先生、研發副總裁段金瑞博士、人工智能算法科學家蒯多傑博士和孫新先生。
視覺識別定義 在 Facebook 的精選貼文
創新工場和BCG諮詢合作的“+AI改造者”系列:看看F5未來商店,如何用AI技術擴大品類優勢,重塑無人零售及餐飲行業。
改造者系列:全自動烹飪+清潔,現在的便利店有多未來?-- 本文来自BCG微信公眾號,經授權轉載。
近期,創新工場聯合BCG波士頓咨詢旗下亨德森智庫,推出「AI融合產業:『改造者』如何促進AI普惠」系列研究。人工智慧在中國大陸有著明確的落地應用場景,大量的AI企業活躍於這些垂直場景中,我們定義這些企業為「改造者」。「改造者」通過傳授其AI技術和垂直行業理解,極大地打破了傳統企業應用AI的瓶頸。
作為擅於趨勢前瞻的TechVC,創新工場長期看好AI領域,深入佈局,至今已經投出了7只AI獨角獸。在系列研究中,我們采訪了數家創新系AI企業,通過這些「改造者」的視角,探究傳統企業擁抱AI的範式與路徑。
在廣東,F5未來商店已經在AI的幫助下重構便利店的商業模式。區別其他無人便利店,F5未來商店抓住了便利店引流獲客的核心品類:鮮食,由後廚機器現場烹飪;不僅如此,顧客用餐後,攝像頭會自動檢查面是否有未處理垃圾,觸發自動回收垃圾和清潔桌面指令。
在采訪中,F5未來商店聯合創始人林小龍認為,許多零售行業的傳統問題是當前AI應用無法跨越的,例如門店擴張導致的供應鏈壓力,想要實現自動化賦能,還需潛心研究和打磨技術。以下:
■系列導讀
本系列由BCG亨德森智庫與創新工場董事長兼首席執行官李開復博士帶領的創新工場團隊共同推出,圍繞「AI融合產業:『改造者』如何促進AI普惠」的課題,我們致力於探究傳統企業在應用AI過程中的關鍵要素與合作夥伴,以及傳統企業擁抱AI的範式與路徑。
在零售行業,F5未來商店以重構便利店的模式向傳統零售企業展示了AI和機器自動化的巨大潛力,重新定義了「無人零售」。正如「F5」其名,F5未來商店嘗試以AI和機器自動化「刷新」零售服務與體驗。
■本期受訪嘉賓:林小龍
F5未來商店是利用機器自動化結合演算法替代人工的24小時機器人便利店。無需服務員,所有烹飪、冲調飲品、取貨、結算、庫存盤點、清潔工作均由機器自動完成。F5未來商店探索未來零售與餐飲的商業空間,重構人與商品的連接場景。
林小龍是F5未來商店的聯合創始人,福布斯中國「30 under 30」。在此之前,他曾任職於騰訊。
■對談實錄
Q1:F5未來商店為什麼選擇切入零售?又為什麼選擇獨立運營,而非和傳統零售商店合作?
林小龍:2014年,F5的創始人徐海成機緣巧合在工廠裡開了一家便利店,營收雖然高,但因為重人力,利潤其實很一般。60平方米大的小店卻雇了13個人來運作,攤去了很多成本。當時我們就在思考,可不可以讓運營工作自動化?可不可以讓機器替代人工?同時,我們也看到市場的整個大趨勢是勞動力供給走下坡,工廠招工越來越難,自動化確實有著巨大的價值。於是當年開始立項做自動化的無人零售。
選擇自己做無人零售的探索主要是因為無人零售仍需要時間證明自己,對已經成型的零售商而言,試驗的風險和成本太高。而且零售的鏈條很長,完全讓零售商各環節改造機器和AI應用影響太大。
我早年在騰訊工作,有一個說法是「小步快跑、快速反覆運算」,無人零售也是一樣。無人零售在早期會遇到各種各樣的問題,需要不斷打磨單店模型,單店模型成熟之後才適合做擴張。這對於已經成型的零售商而言,會面臨業績不升反降的壓力,在試錯的過程中往往信心和意願容易動搖。
另外,F5未來商店的無人化涉及到零售的方方面面,從中央廚房、門店運營到物流供應鏈,對於傳統零售的顛覆是巨大的。F5未來商店將圖像識別、機器自動化、千人千面推薦演算法、機器預測等技術都靈活地運用到了便利店業務當中:包括顧客進店時有攝像頭做人流分析,顧客在電子螢幕上購買時,演算法會根據顧客的歷史購買資料、類似偏好顧客的購買行為來做推薦,出貨之後由攝像頭檢查商品是否被顧客正常取走、攝像頭檢查桌面是否有未處理垃圾而觸發自動回收垃圾並清潔桌面指令等等。在後臺備貨和生產過程中也有AI賦能。比如,我們銷售的品類中有很多是鮮食,都是由後廚的機器蒸煮生產的,我們可以通過資料分析預測需求量,輔助門店精準備貨。這些顛覆對傳統零售商店而言都需要時間來適應。
Q2:我們理解F5未來商店對於傳統便利店的顛覆確實是巨大的,但對於F5未來商店的上下游包括供應鏈、門店運營的員工而言,亦是如此,發展過程中有什麼挑戰嗎?
林小龍:F5未來商店相當於用AI重構了便利店的商業模式,這對於很多有著豐富零售經驗的人來說會有衝擊,甚至存在人與系統的對抗。比如在發貨上,當演算法的推薦和人的經驗認知有所違背時,你是選擇相信演算法還是相信經驗?人對AI的理解不夠(演算法的推薦很難對單點的結果做出解釋)、對AI的信任不夠時,應用AI就會出現挑戰,經營者需要做抉擇。
比如,一個令人驚訝的演算法發現是,在深圳的門店,人們對辣食的偏好要比廣州強得多,水煮牛肉熱銷得多。這是基於我們對商品口味類型的歸納,再將其作為發貨的參考指標,區域經理就能夠根據資料分析的結果來做發貨的決策。而在以前,人的經驗很難有這樣的發現。我們現在的AI店長大概能達到一個有八年經驗的店長水準,能夠理解每個單店的個性化需求。並且,AI對每個門店的需求理解是在隨著時間不斷調整和反覆運算的。
AI能夠加快學習和複製的速度,自動化之後門店所有的東西都可以模式化,10天就能拼裝出一家新店。但是這又涉及到了另一個挑戰——供應鏈問題,我們發現,許多零售行業的傳統問題是AI應用無法跨越的。儘管可複製性提高了,但門店的擴張也會導致供應鏈的壓力急劇增大,一旦上了規模,供應鏈的複雜程度和壓力都會上升。我們最近兩年都在研究供應鏈,在研究供應鏈的自動化輔助,研究技術如何能夠賦能供應鏈。
Q3:F5未來商店相比其它無人零售商店的差異化優勢是什麼?
林小龍:目前市場上大多數無人便利店主要是通過機器視覺、感應器或者RFID來實現無人零售,對於消費者而言,整個對話模式和傳統零售並不會有太大的差異。F5未來商店的變革要大得多,以千人千面的貨架為例,F5未來商店用一塊塊電子螢幕取代了實體貨架,千人千面的產品推薦才變得可能。要知道實體零售中傳統貨架很難移動,也不會因為顧客而有差異。
F5未來商店的另一大優勢在於品類差異,F5銷售很多鮮食,而非包裝商品,相當於是「零售的餐飲化」。因此消費頻次更高、消費品質更高、利潤也更高,其即時性、強線下、集約化的特點也使我們受電商的衝擊不會像百貨商店那麼大。未來,我們在考慮將餐飲模塊獨立出來,用AI和機器自動化賦能餐飲企業。
■要點回顧
1、信任AI並非易事,既往的優勢也可能成為應用AI和創新的阻礙,決策者需要增加對新興技術的理解,在創新浪潮中把握主動權。
2、「改造者」在試圖規模化AI時,往往也會面臨來自傳統企業業務上的挑戰(比如供應鏈的專業程度),因此AI要規模化,還是需要磨煉好垂直領域的內功。
3、在尊重行業規律的前提下,「改造者」要敢於運用AI重構傳統行業,突破傳統方式的束縛,這將有助於「改造者」打造差異化的優勢。