提供完善AI建模工具 陽明交大讓自駕車辨識更精準
訊息來源
https://www.digitimes.com.tw/iot/article.asp?cat=130&cat1=40&id=0000607775_SPR8I9Y662CLUO66K07LI
陽明交通大學電機學院副院長暨嵌入式人工智慧研究中心主任郭峻因。
嵌入式AI技術的應用漸廣,其中深度學習是目前最常用的演算法之一,此演算法需建立完整精確的訓練模型,推論(Inference)端才能順利發揮效益,在此次論壇中,陽明交通大學電機學院副院長暨嵌入式人工智慧研究中心主任郭峻因就以「嵌入式AI深度學習運算模型之建構與應用」為題,發表精采演說。
陽明交大的智慧視覺系統設計實驗室(NYCU iVS Lab),聚焦於各種智慧視覺研究,自駕車也是其中一環。郭峻因表示,自駕車已成全球汽車與科技兩大產業的共同趨勢,NYCU iVS Lab在此領域的研究包括各種ADAS所需的功能與相關技術,在感測器部分,除了視覺感測器外,其研究內容也包括光達(LiDAR)。他指出,影像辨識目前是AI的主流發展方向,在車用領域,AI也可應用於LiDAR,進行物件偵測與分析。
對於AI的導入建議,他表示開發者必須先行掌握圖資與軟硬體核心技術,再進行AI建模,在此環節郭峻因特別強調,建模時必須採用定點而非浮點運算,方能符合自駕車系統需求。針對目前AI設計趨勢與挑戰,郭峻因則以近期的某電動車事故為例點出問題癥結。日前台灣高速公路發生一起車禍,駕駛人放手讓電動車行駛,電動車卻直接撞擊前方道路上一輛倒臥的貨櫃車,在一般正常狀態下,該品牌電動車可偵測前方車輛,過近就會自動剎車,但在這次事件中,AI無法辨識靜止且呈倒臥姿態的貨櫃車是否為車輛,再加上白色車身影響了其視覺判斷,最終釀成車禍。
從這次事件可以看出目前AI在自駕車上的幾個問題,像是攝影機無法偵測車道車輛、霧與強光會干擾系統識別白色汽車、雷達有可能忽略靜態車輛、相機與雷達兩大感測器整合方式有待改進等,現在NYCU iVS Lab就致力於解決上述問題。
郭峻因緊接著談到嵌入式AI感應核心技術與應用。他指出標準的嵌入式深度學習開發,必須先設定與標示資料、再建構訓練模型。NYCU iVS Lab已針對上述環節推出不同平台,讓AI開發者在不同環節均有快速簡易的工具,協助業者縮短開發時程。
郭峻因表示,NYCU iVS Lab所推出的工具都經過測試,具有高度實用性,以資料的設定與標示為例,NYCU iVS Lab在此部分提供的ezLabel工具,只需要前後兩幀畫面,即可標記整段影像中的物件,大幅減少人工標記工時;ezLabel是網路開放平台,可讓全球各地深度學習專家與一般民眾使用,目前ezLabel 2.3版已累積有超過610位使用者。
模型建構部分,NYCU iVS Lab建構SSD輕量化模型與MTSAN(Multi-Task Semantic Attention Network;多任務語義注意網路)。SSD輕量化模型解決了過去此類模型因錨點(Anchor)密度不足,難以偵測瘦長物品的痛點,NYCU iVS Lab在加入CSPNet後,不僅強化運算速度與準確度,同時運算量與參數量也減少了一半。至於MTSAN則是結合物件偵測技術,利用畫素分割場域,並藉此強化物件特徵,郭峻因指出,光是此動作就可提升4.5%的準確度(mAP)。
自駕車導入可分割場域的MTSAN後,可與前車防碰撞(FCWS)或車道偏移系統(LDWS)整合,精準判斷車道,在山路上行駛時,可以識別彎曲車道線,另外也可加入2D與3D的卷積(Convolution)行為分析技術,用來預測後端車輛的超車方向與可能性。
演講最後郭峻因引述美國未來20年發展AI的藍圖做總結。他表示未來的AI必須與情境整合,同時打造開放性知識場域,集結眾人之力,讓AI可了解人類的智能與反應,以進行有意義的互動,此外AI也必須能自我學習,整合周邊環境的各種資訊,培養應對困難挑戰的能力。
至於自駕車的AI應用,他則指出需強化研發各種感知技術,讓車輛可以精準識別路上各類型物件與其移動的意向,將是未來產學研的重點,透過這些研發,車禍事故發生機率將可大幅降低,進而建構安全可靠的交通場域。
同時也有11部Youtube影片,追蹤數超過554的網紅大新店芳琪記者媽的日常,也在其Youtube影片中提到,不論妳是使用iOS還是Android系統,只要有支援 ARCore技術都可以使用! 步驟一:請以手機開啟Google瀏覽器 步驟二:輸入「動物名」(中英文皆可) 步驟三:點選「透過 3D 模式檢視」 步驟四:點選「在你的空間檢視」 步驟五:找到地面,手機持平移動,讓相機偵測四周物件 妳的3D超立體動...
物件偵測技術 在 台灣物聯網實驗室 IOT Labs Facebook 的最讚貼文
AI落地工業環境挑戰多,中鋼歸納3大AI導入經驗:足量訓練資料、選對技術、循序漸進為成功關鍵
中鋼採取由現場出題、專家解題的方法,從2017年開始較具規模的導入AI,今年在臺灣AI年會上,更分享了實作AI過程中遇到的挑戰,更以自家代表性的AI專案,歸納出3大實戰經驗來提供他者參考
文/翁芊儒 | 2020-11-19發表
中鋼綠能與系統整合研究發展處研究員許朝詠,以自己實作過的多個AI專案,來分享從選題、執行到落地的3大AI實戰經驗。
中鋼從2014年開始擁抱智慧製造,經歷了許多試驗後,才在2017年更有規模的落地AI應用,採取由現場出題、專家解題的方法,每年從上百個提案中篩選約20個可行性較高的方案,來導入應用場景。中鋼綠能與系統整合研究發展處研究員許朝詠,也在今年的臺灣AI年會上,以自己實作過的多個AI專案,從選題、執行到落地,歸納出3大AI實戰經驗,來提供其他企業借鏡參考。
許朝詠首先引述麥肯錫2019年發布的一份報吿指出,企業要在工業場景落地AI並不容易,超過7成的企業正在進行局部試點,其中29%企業已經試點超過2年,56%進行了1~2年,更有15%才剛起步。對中鋼來說,在導入AI過程中,也同樣面臨了「試點困境」,尤其在電腦視覺要落地煉鋼場域時,中鋼也面臨了4個AI應用挑戰。
其一,是工業環境不易控制,會造成取得影像的品質差異大,比如鋼鐵製造環境動輒在900度以上的高溫中,處理過程也可能噴水冷卻,導致難以取得清楚的影像;又或是在同樣位置拍攝的影像,也可能因光源不同,導致影像呈現不同的效果。
其二,現場實際環境會限制AI應用的計算能力,比如部分場所的空間有限,無法擺下GPU伺服器、或高計算能力的設備,甚至連網路線都無法部建,「在這樣的環境下,我們的模型就必須要能兼容邊緣運算,才能實際應用。」許朝詠說。
其三,被偵測物體的尺寸不一,也會影響深度學習的模型訓練成果。許朝詠以識別鋼品身分的AI序號辨識為例,就算是相同的鋼品,影像拍攝的尺寸不同,會造成鋼品上印製序號大小的差異,進而影響序號辨識模型的表現。
最後,則是深度學習模型的調整彈性差。同樣以序號辨識模型為例,許朝詠表示,有時會遇到視覺效果相同的數字(比如像是同一個數字1),在不同序列中卻無法辨識,「為什麼有時候,1可以辨識出來,有時候卻不行?」許朝詠表示,要解決這個問題,通常需要重新訓練模型,但會消耗許多時間。因此,中鋼目標要提出適合工業應用的物件偵測技術,來更輕易且廣泛的應用到各個製程。
3大AI導入經驗之一:充足訓練資料是AI成功落地的一大關鍵
許朝詠也透過多個中鋼導入AI的案例,來分享導入經驗。比如說,前述提到的AI序號辨識應用,是指在將鋼片卷曲製作成一卷卷的鋼卷後,會在鋼卷的金屬表面或是側面,噴印上鋼鐵的生產序號,藉此來辨識每一卷鋼鐵的身份。但是,這些序號的噴印位置,可能帶來不同的辨識挑戰,比如噴印在鋼卷表面,就可能因金屬反光影響序號辨識的精準度,若是噴印在鋼卷側面,層層堆疊的鋼片又可能導致字體變形,均會影響AI判讀。
「我們提供技術,但有些問題不是技術能解決的,就要跟現場人員溝通,請他們協助解決問題。」許朝詠指出,AI落地需要與第一線人員溝通協作。
不過,就算與現場人員合作,序號的辨識率仍無法達到100%,尤其是鋼卷側面序號的辨識率,僅達到9成5,「序號要完全正確才能用,9成5其實很低。」許朝詠表示,為了克服這項挑戰,中鋼在產線上的多個位置都設有攝影機,同時將這些攝影機判讀的資訊互通,透過多點的資訊對接,來判斷出鋼卷序號。
「不要把問題放在同一個地方,比如利用多點攝影機、多資訊的串流,去補足AI模型上的不足,就能讓整個系統的準確率達到100%。」他說。
另一個例子,則是高爐原料粒徑分析的AI應用。一般來說,高爐是用來將原料溶解為鐵水,而原料在送入高爐時,若粒徑大小分佈較平均,就能提升高爐的燃燒效率,中鋼甚至推算,高爐燃燒效率每提高1%,每年可以減少上億的燃料經費,因此,中鋼用AI來辨識每顆原料的粒徑大小,即時計算出進到高爐的物料大小與分佈狀況,再根據計算結果來調整物料分佈,進而提升燃燒效率。
許朝詠表示,上述兩個案例的共通點,在於資料的取得非常容易,不管是序號或是原料的影像資料,都在產線上不斷產生,「影像取得沒問題,資料也乾淨,較有機會訓練出良好的深度學習模型,也有機會快速達到成效。」相對來說,瑕疵辨識這類AI應用的影像資料搜集,就比較困難。
「要判斷一個案子能不能做,可以先看能不能蒐集到足量的資料。」這就是許朝詠歸納的第一大AI導入經驗。
3大AI導入經驗之二:不是最新技術也能打造最切合場景需求的應用
許朝詠也接續說明了無人天車的AI應用。天車是一種重型的起重裝置,用來吊送貨品、放置到指定位置,而中鋼就是將原先需要人為操控的天車,透過AI達到無人化,「這也是我認為中鋼應用AI最成功的案例。」
要達成無人天車,主要是把人眼看到的操作資訊,透過電腦視覺轉換為控制的指令,再交由天車自動執行,也就是將操作人員看見的鋼卷位置、放置位置及操作方法,都轉換為天車指揮系統可以判讀的資訊,再透過運動控制達到自動化。
無人天車使用的技術,包括能透過座標辨識來裝卸鋼卷的機器視覺系統,以及能透過RFID讀取鋼卷身份,再準確偵測鋼卷的中心位置來吊起鋼卷的智慧型吊夾,而整體鋼卷的吊運排程與吊運路徑最佳化,則是由天車指揮系統來規劃,中鋼同時也建置用來傳輸車籍資料、整合裝卸車資料的雲端倉儲管理系統。達到天車操作全自動化之後,中鋼也設置了主動式安全防護機制,透過深度學習來偵測天車下方是否有人行走,並在行駛過程中自動辨識障礙物與閃避。
建置了無人天車帶來的一大效益,就是能在出貨的前一晚,由機器自動理貨,將要出廠的貨物就近放置到出貨的位置,「天車不會休息,人會休息,在不需出貨的時間先理貨,就能加速出貨的效率。」許朝詠說。
中鋼的無人天車也早在2018年就投入運作,至今已經完成超過數十萬顆鋼卷的吊運。不只自建自用,中鋼也將這套無人天車系統外銷到中國鋼廠,2019年就已經銷售了12套系統,今年武漢肺炎疫情期間,更是遠距協助客戶調機、將系統落地。
不過,這個貼近鋼鐵業需求的無人天車,實際上並無用到深度學習技術,「深度學習雖然是好工具,但不一定是最佳工具,也不是唯一的工具。」許朝詠表示,由於天車在裝卸鋼卷時,需要非常精準的定位,誤差超過5公分就可能吊不起鋼卷,但深度學習在位置偵測的精準度上並無優勢,加上判斷速度較慢,「傳統影像處理有些技術,應用上會比深度學習來的更好。」
換句話說,不是用最新、最強的技術就好,不同應用場景有其最合適使用的技術,這就是許朝詠歸納的第二大AI導入經驗。
3大AI導入經驗之三:從自動化、人機協作到智慧化循序漸進落地AI
最後,許朝詠也提出一項正在建置的AI應用,也就是出貨前的鋼卷智能檢核,雖然目前僅有初步成果,但這項應用實際影響了傳統檢核作業流程的轉變。
許朝詠解釋,鋼鐵在包裝、裝載完成之後,還需要檢核包裝外觀,以避免客戶收貨後發現包裝瑕疵,因而對品質產生疑慮。為了檢核來自23個倉庫的貨品,中鋼設置了4個主要的檢核站,共計17個車道、每個車道配置4名檢核人員,車輛在倉庫裝載貨品後會先前往檢核站,由人工檢查外觀是否破損,並核對貨品身份與數量,完成檢核才能出廠。
但傳統的人力檢核方式,不僅人力成本較高,大量出貨時載貨司機也常需排隊等待,更佔用了約兩個倉庫的空間來檢核。對此,中鋼試圖透過AI智能檢核的方式,將傳統的檢核中心改以一個雲端檢核中心來取代,在每個倉庫出貨前,直接將鋼卷影像上傳雲端,由檢核人員從雲端照片來判斷是否有瑕疵,若無即可放行車輛出廠,不只能加快檢核效率,檢核人員也能更輕鬆完成任務。
而這些檢核照片的篩選,則是先拍攝車輛進入檢核站的影像,經過運算後,自動擷取鋼卷正面、側面品質最佳的影像,透過自動檢放系統來提供檢核人員檢驗,經實測後,完成8張鋼卷照片的檢驗大約只要8秒。
許朝詠表示,將檢核流程雲端化只是第一步,中鋼下一步要利用檢放系統,在檢核人員雲端判讀照片狀況的同時,蒐集異常照片的資料,再利用深度學習的技術來訓練瑕疵辨識模型,進一步將檢核流程自動化且智慧化,來取代人工作業。
「邁向智慧化的過程,很多人會想要一步到位,但很困難,如果能用AI先實現局部的自動化,透過人機協作來提升作業效率,並同步搜集資料,就會對智慧製造的實現有很大的幫助。」許朝詠認為,AI落地並非一蹴可幾,需要一步步優化原先的作業流程,蒐集足夠的資料,才能實現智慧化的目標,這也是他提出的第三大AI導入經驗。
附圖:應用場景的序號本身可能有模糊、手寫字、油漆過淡等問題。
透過資訊的串接,來克服AI序號辨識可能不夠精準的問題。
透過即時原料粒徑大小分析來調整物料分佈,進而提升高爐燃燒效率。
人工檢核過程。
透過檢放系統來檢驗熱軋鋼卷的包裝外觀。
資料來源:https://www.ithome.com.tw/news/141163?fbclid=IwAR3UUiJ0rpr7aUf8d2FmGZaZp3_e4E-9esf6ZOD1iiA20Id4ZYo1-hK7iwc
物件偵測技術 在 緯育TibaMe Facebook 的最讚貼文
#科技好文 #基於深度學習的物體偵測
物件偵測是深度學習中最熱門主題之一,
主因是它的功能,在生活當中有各式各樣的應用。
如:自駕車的前方物體偵測、
智慧商店辨識消費者購買哪些商品、
監控系統偵測特定區域是否有人,
可判斷是否有不明人士闖入。
本文從機器學習出發,
與你分享過去幾年深度學習運用在物件偵測技術的進展~
▍看完整文章👉 https://bit.ly/3nVlbml
物件偵測技術 在 大新店芳琪記者媽的日常 Youtube 的最讚貼文
不論妳是使用iOS還是Android系統,只要有支援 ARCore技術都可以使用!
步驟一:請以手機開啟Google瀏覽器
步驟二:輸入「動物名」(中英文皆可)
步驟三:點選「透過 3D 模式檢視」
步驟四:點選「在你的空間檢視」
步驟五:找到地面,手機持平移動,讓相機偵測四周物件
妳的3D超立體動物就出現啦!
據悉,目前可支援手機使用 #Google 搜尋 ,開啟 #3D模式 的 #AR動物名稱 ,約有24款,列出如下:
狗 Dog /拉布拉多犬 Labrador Retriever / 巴戈犬Pug /羅威那 Rottweiler
貓 Cat
鴨 Duck
狼 Wolf
熊 Brown bear
羊 Goat
馬 Horse
蛇 Snake
烏龜 Turtle
老鷹 Eagle
熊貓 Giant panda
獅子 Lion
老虎 Tiger
獵豹 Cheetah
刺猬 Hedgehog
鯊魚 Shark
八爪魚 Octopus
鮟鱇魚 Angler fish
短吻鱷 Alligator
金剛鸚鵡 Macaw
德蘭矮種馬 Shetland pony

物件偵測技術 在 吳老師EXCEL VBA設計(大數據自動化)教學 Youtube 的精選貼文
文化EXCEL高階函數與大數據VBA自動化第4次上課(152分別擷取長寬高資料剖析&錄製巨集步驟說明與修改VBA程式&註解與關閉訊息提示與Application物件&範例字串切割取得超聯結函數&用VBA配合Do_While迴圈&103判斷數字用MID&CODE&IFERROR&SUM函數與陣列&VBA解答)
上課內容:
01_重點回顧與152分別擷取長寬高資料剖析
02_錄製巨集步驟說明與修改VBA程式
03_巨集加上註解與關閉訊息提示與Application物件
04_修改巨集自動偵測最後一列位置
05_範例字串切割取得超聯結函數說明
06_範例字串切割用VBA配合Do_While迴圈
07_103判斷數字用MID&CODE&IFERROR&SUM函數與陣列
08_103判斷數字用VBA解答
完整影音
http://goo.gl/aQTMFS
教學論壇(之後課程會放論壇上課學員請自行加入):
https://groups.google.com/forum/#!forum/pccu_excel_vba02
懶人包:
EXCEL函數與VBA http://terry28853669.pixnet.net/blog/category/list/1384521
EXCEL VBA自動化教學 http://terry28853669.pixnet.net/blog/category/list/1384524
新課程EXCEL VBA辦公自動化順利在自強基金會開始第一次上課,
主要目標能延續入門課程,進一步延續前課程,把函數變成VBA,
VBA設計自動化與VBA與資料庫當成重要課程目標。
課程理念:
1.以循序漸進的方式, 透過詳細的說明和實用的50個Excel VBA範例,
帶領您輕鬆進入 Excel VBA 設計的領域, 並逐步了解整個 VBA 的架構與輪廓,
進而學習 VBA 變數、常數、函式及邏輯的觀念, 即使沒有任何程式設計基礎,
也能自己親手撰寫 VBA 程序來提昇工作效率, 晉身職場 Excel 高手!
2.進而解說EXCEL與資料庫的結合,甚至將EXCEL當成資料庫來使用,
結合函數、VBA等更深入的功能,讓資料處理和分析的應用更上層樓。
3.將結合GOOGLE雲端試算表,教您如何將EXCEL函數雲端化與網路化。
上課用書:
Excel VBA一點都不難:一鍵搞定所有報表
作者: Excel Home
出版社:博碩
出版日期:2013/06/26
定價:380元
超圖解 Excel VBA 基礎講座
作者: 亮亨/譯 出版社:旗標
出版日期:2006/05/15 定價:420元
日本Amazon網站同類書籍銷售No.1
EXCEL VBA上一期是EXCEL函數與VBA入門,這一期則以EXCEL VBA進階程式設計為主,
剛好進來雲端技術發酵,就順便帶入大家都有興趣的雲端試算表,
所以第一次上課就要求大家一定要有GOOGLE帳號,
電腦也一定安裝GOOGLE瀏覽器,這樣才能上雲端去使用GOOGLE的試算表,
可以比較和EXCEL2003的差異,如果可以輕易使用GOOGLE的試算表,
這樣就可以再沒有EXCEL2003的環境也能作業。
此外,這學期教是剛換 OFFICE 2007,剛好可以順勢學習 EXCEL2007 新介面,
所以未來的學習環境除了雲端外,就是EXCEL2007 了!
對大家來說有很多挑戰要面對,但如果學會這些技術,工作上一定非常有幫助的。
尤其是雲端方面的技術,目前懂的人還真不多,用的人也少,
但這樣好用的技術為什麼沒人推廣?
可能也是大家都還不會使用吧!之所以自己用的熟,
主要用GOOGLE的服務至少5年以上,看著GOOGLE的壯大,發現只要跟著GOOGLE就沒錯!
不斷使用他的免費服務,感覺穩定又好用,重要的事完全免費。
吳老師 106/6/1
函數,文化進修推廣部,自強基金會,程式設計,線上教學excel vba教學電子書,excel vba範例,vba語法,vba教學網站,vba教學講義,vba範例教學,excel vba教學視頻

物件偵測技術 在 吳老師教學部落格 Youtube 的最佳解答
東吳EXCEL VBA與資料庫雲端設計第3次上課(93邏輯函數多重判斷與轉VBA的SUB程序&多重判斷VBA&讓某範圍水平位置置中&成績多重顏色格式設定&框線繪製自動化&VBA加密與用增益集分享自訂函數&EXCEL當資料庫與表單設計)
上課內容:
01_邏輯函數多重判斷與轉VBA的SUB程序
02_偵測最下一列與多重判斷VBA說明
03_讓某範圍水平位置置中說明
04_成績多重顏色格式設定與清除VBA說明
05_自定成績多重函數與框線繪製自動化
06_框線物件使用與框線自動化說明
07_VBA加密與用增益集分享自訂函數
08_將EXCEL當資料庫與表單設計
完整影音
https://www.youtube.com/playlist?list=PLgzs-Q3byiYMefya1beNc0T4wGOfDEvkM
教學論壇(之後課程會放論壇上課學員請自行加入):
https://groups.google.com/forum/?hl=zh-TW#!forum/excel-vba-93
懶人包:
EXCEL函數與VBA http://terry28853669.pixnet.net/blog/category/list/1384521
EXCEL VBA自動化教學 http://terry28853669.pixnet.net/blog/category/list/1384524
新課程EXCEL VBA辦公自動化順利在自強基金會開始第一次上課,
主要目標能延續入門課程,進一步延續前課程,把函數變成VBA,
VBA設計自動化與VBA與資料庫當成重要課程目標。
課程理念:
1.以循序漸進的方式, 透過詳細的說明和實用的50個Excel VBA範例,
帶領您輕鬆進入 Excel VBA 設計的領域, 並逐步了解整個 VBA 的架構與輪廓,
進而學習 VBA 變數、常數、函式及邏輯的觀念, 即使沒有任何程式設計基礎,
也能自己親手撰寫 VBA 程序來提昇工作效率, 晉身職場 Excel 高手!
2.進而解說EXCEL與資料庫的結合,甚至將EXCEL當成資料庫來使用,
結合函數、VBA等更深入的功能,讓資料處理和分析的應用更上層樓。
3.將結合GOOGLE雲端試算表,教您如何將EXCEL函數雲端化與網路化。
上課用書:
Excel VBA一點都不難:一鍵搞定所有報表
作者: Excel Home
出版社:博碩
出版日期:2013/06/26
定價:380元
超圖解 Excel VBA 基礎講座
作者: 亮亨/譯 出版社:旗標
出版日期:2006/05/15 定價:420元
日本Amazon網站同類書籍銷售No.1
EXCEL VBA上一期是EXCEL函數與VBA入門,這一期則以EXCEL VBA進階程式設計為主,
剛好進來雲端技術發酵,就順便帶入大家都有興趣的雲端試算表,
所以第一次上課就要求大家一定要有GOOGLE帳號,
電腦也一定安裝GOOGLE瀏覽器,這樣才能上雲端去使用GOOGLE的試算表,
可以比較和EXCEL2003的差異,如果可以輕易使用GOOGLE的試算表,
這樣就可以再沒有EXCEL2003的環境也能作業。
此外,這學期教是剛換 OFFICE 2007,剛好可以順勢學習 EXCEL2007 新介面,
所以未來的學習環境除了雲端外,就是EXCEL2007 了!
對大家來說有很多挑戰要面對,但如果學會這些技術,工作上一定非常有幫助的。
尤其是雲端方面的技術,目前懂的人還真不多,用的人也少,
但這樣好用的技術為什麼沒人推廣?
可能也是大家都還不會使用吧!之所以自己用的熟,
主要用GOOGLE的服務至少5年以上,看著GOOGLE的壯大,發現只要跟著GOOGLE就沒錯!
不斷使用他的免費服務,感覺穩定又好用,重要的事完全免費。
吳老師 105/10/4
函數,東吳進修推廣部,自強基金會,程式設計,線上教學excel vba教學電子書,excel vba範例,vba語法,vba教學網站,vba教學講義,vba範例教學,excel vba教學視頻
