創新工場和BCG諮詢合作的「+AI改造者」系列:創新工場投資的Insilico Medicine,看AI新藥研發平臺如何賦能傳統藥企,一起進行“AI+生命科學”的顛覆式創新!
改造者系列:AI醫藥的下一站是長壽 -- 本文来自BCG微信公眾號,經授權轉載。
近期,創新工場聯合BCG波士頓咨詢旗下亨德森智庫,推出「AI融合產業:『改造者』如何促進AI普惠」系列研究。人工智能在中國大陸有著明確的落地應用場景,大量的AI企業活躍於這些垂直場景中,我們定義這些企業為「改造者」。「改造者」通過傳授其AI技術和垂直行業理解,極大地打破了傳統企業應用AI的瓶頸。
作為擅於趨勢前瞻的TechVC,創新工場長期看好AI領域,深入佈局,至今已經投出了7只AI獨角獸。在系列研究中,我們采訪了數家創新系AI企業,通過這些「改造者」的視角,探究傳統企業擁抱AI的範式與路徑。
創新工場投資的英矽智能(Insilico Medicine)是一家由人工智能驅動的全球領先生物技術公司,通過發明和迭代人工智能藥物研發平臺,變革創新藥物和療法的發現方式。
英矽智能的AI藥物研發平臺已經證明了自己的能力:在今年2月和8月,半年的時間內,先後公佈了兩種臨床前候選藥物,分別用於治療特發性肺纖維化和腎臟纖維化。
在采訪中,英矽智能創始人兼首席執行官Alex Zhavoronkov博士表示,AI醫藥企業的下一個重要問題將是如何更好地理解生物學和跨物種生物學,長壽業或者抗衰老技術將會是未來的方向。以下:
■系列導讀
本系列由BCG亨德森智庫與創新工場董事長兼首席執行官李開復博士帶領的創新工場團隊共同推出,圍繞「AI融合產業:『改造者』1如何促進AI普惠」的課題,我們致力於探究傳統企業在應用AI過程中的關鍵要素與合作夥伴,以及傳統企業擁抱AI的範式與路徑。
AI製藥領域於2014年左右興起,在2018—2020年間全面爆發。AI能夠快速識別大量樣本中的客觀規律,加速尋找和測試潛在靶點的過程。「有了AI,我們50個人可以做到的事情,比得上一個典型的製藥公司5000人所做的事情」,英矽智能創始人Alex Zhavoronkov在「未來呼嘯而來」一書中如是分享。2
1 「改造者」 通過傳授其AI技術和垂直行業理解,極大地打破了傳統企業應用AI的瓶頸,充當產業中傳統企業應用AI的橋樑。「改造者」包括AI企業與成功轉型AI的傳統企業。
2「未來呼嘯而來」,彼得·戴曼迪斯(Peter H.Diamandis)和史蒂芬·科特勒(Steven Kotler)著。
■本期受訪嘉賓:Alex Zhavoronkov
英矽智能(Insilico Medicine)是一家由人工智能驅動的全球領先生物技術公司,通過發明和迭代人工智能藥物研發平臺,變革創新藥物和療法的發現方式,加速研發進程,為癌症、纖維化、抗感染、免疫和抗衰老等未被滿足的臨床治療需求提供創新的藥物和療法方案。
Alex Zhavoronkov是英矽智能的創始人兼首席執行官。他擁有皇后大學學士學位,約翰·霍普金斯大學生物技術碩士學位,以及莫斯科國立大學物理和數學博士學位。
■對談實錄
Q1 英矽智能原來在美國創立,後來為什麼選擇遷至中國?
Alex:中國構建了一套完善的體系和土壤,吸引創業企業、大型企業紛紛入駐。中國大陸多樣化的投資者,包括傳統藥企、科技巨頭、PE/VC等各類投資者,能將最優質的AI人才、CRO、藥企融合在一起。投資者能為初創企業提供資質牌照、幫助招聘、企業管理和宣傳等等。英矽還與許多學校開展了合作研究,擁有豐富的內部研發管線。中國完整的生態夥伴體系使得像我們這樣的企業能夠迅速擴大研發規模,甚至與大藥廠競爭。
Q2 英矽智能和輝瑞、安斯泰來、楊森製藥等諸多藥企都有合作,在和大型藥企合作的過程中有什麼心得或者經驗?
Alex:創新型的AI生物技術公司按照創立時間可以分為三大類:2014年之前成立、2014年—2015年左右成立、最近5年成立。2014年之前成立的企業通常不運用深度學習(deep learning),或者不具備向藥企提供解決方案所需的行業知識。2014—2015年間成立的企業則創立的正是時候,生成式對抗網絡(Generative Adversarial Network)出現,AI製藥開始興起。同時,許多藥企缺乏AI的專業知識和AI團隊,如果想要獲取AI方面的知識和技能,就必須與初創企業合作。作為交換,那時候的藥企也通常願意向初創企業提供資料和各類資源。英矽智能很幸運,創立時間(2014)正處於大藥企對外部合作最為開放和寬鬆的時期。而最近幾年成立的企業就沒那麼幸運了,很多藥企已經開始自建AI團隊、自研AI應用,只有具備非常特定細分領域AI技術的初創企業才有可能成功撬動藥企,與之建立合作。
然而據我的觀察,儘管許多大藥企都建有自己的AI部門和數據科學家團隊,但他們並沒有足夠強的AI能力——他們往往缺乏具備足夠AI知識的團隊。以生物醫藥方面的論文發表為例,在2014—2019年間,英矽智能發佈了上百篇AI相關的論文,然而發表AI論文數量最多的藥企阿斯利康則只有65篇,位列其次的諾華有54篇。
藥企往往也不知道從何處開始應用AI,而這正是AI初創公司能夠創造價值的地方。但是,在AI初創公司開始接觸藥企和銷售方案之前,首先要充分理解大型藥企錯綜複雜的組織架構和部門分工,針對不同部門銷售定制化的模塊,而非從一開始就銷售整體性、綜合性的解決方案。這是因為藥企內部通常很難有一個部門能夠處理所有的模塊,部門之間的協同往往沒有那麼強。因此,AI初創公司在提供解決方案的時候也要靈活地劃分模塊,對症下藥,英矽智能通常一次只銷售一個模塊。
儘管銷售是模塊化的,AI初創公司需要具備端到端、全鏈路的解決方案。英矽根據不同的研發週期,設計了三大AI平臺——新藥靶點發現平臺、分子生成和設計平臺、臨床試驗預測平臺。據我們瞭解,中國還沒有任何一家同行,同時擁有生成生物學和生成化學兩大AI平臺,能把靶點發現和小分子化合物生成有機結合在一起的公司很少。此外,英矽智能的AI系統可以用軟件形式呈現,藥企可以自行操作,用自己的數據運算測試。這些都為我們創造了差異化的優勢。
最後,對於藥企而言,如果想要應用綜合的AI解決方案,需要有整體性的戰略為引領。咨詢公司可以充當整合各部門組織、統籌整體戰略的角色,AI企業可以選擇與之合作。
Q3 在您看來,未來AI醫藥領域的發展趨勢是什麼?
Alex:在未來,最重要的不是AI技術,而是如何將AI和行業特定的實驗數據或模型結合。現在市場上已經充滿了各種各樣的技術企業,他們在不斷精進演算法模型和數據。未來的競技不會是關乎演算法或者算力,而是新的商業模式或者應用AI的新方式。
AI初創公司需要積累足夠的行業專識,理解藥企的需求,學習藥企的經驗,並向藥企證明自己提供的模塊能夠在真實的商業環境下應用,並且模塊之間能夠很好地兼容,能融入業務流程,且符合監管要求。比如機器學習加速了藥物識別,但還有很多步驟和流程並不能被加速或跨越:實驗論文不能被跨越,你依然需要向藥物監管部門提供大量實驗數據和模型來證明研究的有效性;實驗中的生物過程不能被加速,你依然需要等待生物體自然的新陳代謝和細胞活動,你也不可能直接從大鼠實驗跨越到人類實驗。而這些都涉及到更細分的新技術問題。
所以,對於AI醫藥企業而言,下一個重要的問題將是如何能夠更好地理解生物學?如何理解跨物種生物學?正因如此,我判斷長壽業或者抗衰老技術將會是未來的方向,即如何運用AI來監督和追蹤生命體在漫長時間裡無數細微的實時變化,來創建數字孿生(digital twin),進行跨物種比較、跨疾病模型比較。我相信AI是説明我們更好地認識生命體的最佳工具。
■要點回顧
1、中國的資本環境天然地聚集了垂直產業領域的優質企業,幫助AI初創公司,即「改造者」,迅速汲取經驗、擴大規模,加速行業創新與賦能。
2、在與垂直行業企業合作時,「改造者」既要有端到端的解決方案,也要有靈活、敏捷的銷售和服務模式。端到端、全鏈路的方案有助於「改造者」更靈活地根據傳統企業的需求組合方案,能夠擴大服務範圍和客群,提升「改造者」的競爭優勢。
3、未來最重要的不是AI技術,而是如何將AI與行業特定的實驗數據或模型結合。限制因素並不是演算法或者算力,而是新的商業模式或者應用AI的方式來實現行業定制化。
「李佳翰深度學習」的推薦目錄:
- 關於李佳翰深度學習 在 Facebook 的最佳解答
- 關於李佳翰深度學習 在 阮劇團 Our Theatre Facebook 的精選貼文
- 關於李佳翰深度學習 在 李開復 Kai-Fu Lee Facebook 的最佳解答
- 關於李佳翰深度學習 在 [心得] 電信所李佳翰深度學習- 看板NCTU-Teacher - 批踢踢實業坊 的評價
- 關於李佳翰深度學習 在 NCTU-Teacher - [心得] 電信所李佳翰深度學習 - Mo PTT 鄉公所 的評價
- 關於李佳翰深度學習 在 徵李佳翰深度學習考古- 交通大學板 - Dcard 的評價
- 關於李佳翰深度學習 在 交大ptt - kaleidosforma.it 的評價
- 關於李佳翰深度學習 在 [徵求]李佳翰深度學習考古題- 看板NCTU_TALK - PTT網頁版 的評價
- 關於李佳翰深度學習 在 LASS-開源公益環境感測網路| FarmBot 預購了,雖然價格不低 的評價
- 關於李佳翰深度學習 在 李佳翰ptt的推薦與評價 - 去咖啡廳的路上 的評價
- 關於李佳翰深度學習 在 平均時間複雜度算法的問題包括PTT、Dcard、Mobile01 的評價
- 關於李佳翰深度學習 在 平均時間複雜度算法的問題包括PTT、Dcard、Mobile01 的評價
- 關於李佳翰深度學習 在 交大ptt 的評價
- 關於李佳翰深度學習 在 深度學習介紹(Introduction of Deep Learning) by 國立屏東大學 ... 的評價
李佳翰深度學習 在 阮劇團 Our Theatre Facebook 的精選貼文
#十殿 舞台縮時攝影超級酷😎
變化多端的舞台也不是一天造成的
所有幕後工作人員辛苦了💦
謝謝這些不為掌聲,沒日沒夜的夥伴。
舞監組:陳昭郡、黃詠芝、楊嘉璿
舞臺組:劉柏言、葉岫穎、黃學仁、張修銘、張志遠、曾擇弘、陳人碩、何欣芸、包ㄧ妘
燈光組:尹信雄、余琬臻、徐譜喬、李佳儒、蘇揚清、林秉昕、朱子甫
影像組:黃詠心、陳怡行、郭蕙瑜
道具組:陳妤蓁、朱惟歆
音響組:陳宇謙、陳星奎、張稚暉、溫承翰、林家瑜
服裝組:林昕誼、林家綾、戴文欣、鍾汶叡
https://www.instagram.com/p/COSZdyHHx0G/?igshid=1ekzqv7wvgvj0
【台北場觀眾回饋】
➡️沈重但好看,第一次看阮劇團的演出,好看!
雖然整個劇本讓人開心不起來,甚至坐立難安,但是很棒的作品。
➡️很好看
很不一樣的作品
➡️喜歡舞台設計、喜歡劇本!最喜歡是用台語演出!
➡️很棒!任何地方都很棒!已經成為內心的第一名了!謝謝你們為台灣的劇場努力,我也會努力學習劇場,成為像你們這樣的人!
➡️題材與呈現手法的創意很不錯!!
➡️用台語演出本土化的生活劇非常值得推廣
➡️片尾的演出格外令人驚艷也令人驚喜,我喜歡劇中唱劇的那一位,歌喉超讚。舞台場景和上次觀賞多了精彩的變化,用心又豐富。很棒!
➡️有深度的主題
➡️非常驚艷的一場!想再去高雄補完奈何橋
➡️很喜歡具有挑戰精神的劇團,會繼續支持
我覺得聲光效果、導演手法都超棒的!可惜沒時間看奈何橋,希望之後還會加碼演出!
📢同場加映觀劇指南📢
阮劇團《十殿》演出台語發音,依場次安排提供華英與台英字幕輔助喔
▎週五、周日的演出場次為華文、英文雙語字幕
▎週六的演出場次為台文、英文雙語英字幕
📢注意事項📢
《十殿》演出內容裸露、性愛場面、不雅用字、抽煙、暴力、巨大聲響等,敬請注意並斟酌入場
────
🏗 2021 阮劇團《十殿》
✦ 不顧天堂反對 ✦
►售票連結|https://linktr.ee/palaces_ourtheatre
►官方網站|https://palaces.ourtheatre.net/
═════ 台中場 ═════
場次|2021/5/01 (六) 14:30〈奈何橋〉
2021/5/01 (六) 19:30〈輪迴道〉
2021/5/02 (日) 14:30〈輪迴道〉
地點|台中國家歌劇院 中劇院
票價|400 / 600 / 800 / 1000 元
═════ 高雄場 ═════
場次|2021/5/07 (五) 19:30〈奈何橋〉
2021/5/08 (六) 14:30〈奈何橋〉
2021/5/08 (六) 19:30〈輪迴道〉
2021/5/09 (日) 14:30〈輪迴道〉
地點|衛武營國家藝術文化中心 戲劇院
票價|300 / 600 / 900 / 1200 / 1600 / 1800 元
演出卡司|王肇陽、余品潔、李辰翔、李明哲、杜思慧、周政憲、周浚鵬、林文尹、洪健藏、張千昱、莊庭瑜、莊益增、莊雄偉、陳忻、葉登源、楊智淳、鄧壹齡、鐘品喬、顧軒、MC JJ
#國家表演藝術中心場館共同製作計劃
國家兩廳院 NTCH, Taipei
臺中國家歌劇院 National Taichung Theater
衛武營國家藝術文化中心 National Kaohsiung Center for the Arts - Weiwuying
李佳翰深度學習 在 李開復 Kai-Fu Lee Facebook 的最佳解答
前陣子與深度學習發明人之一、2019年ACM圖靈獎得主Yoshua Bengio教授一起對話,深深為他身上的科學家底蘊所感動。
Bengio教授長期致力於推動AI的合理使用,尤其對用AI解決環保議題有很多投入,如使用新藥研發的AI演算法概念,延伸應用在發掘全新低污染材料以對抗全球氣候環境變化的艱巨挑戰。
他相信,人工智慧將推送社會的理性和包容,構建AI與人類社會的良性循環。
這是我們討論的視頻和文字記錄。
……………………
李開復對話Yoshua Bengio:構建AI與人類社會的良性循環
7月23日,創新工場董事長兼CEO李開復博士,受邀參加SGInnovate主辦的“深度科技(Deep Tech)造福人類”活動,與Element AI聯合創始人Yoshua Bengio教授對話,討論人工智慧的未來發展。
在對話中,李開復博士與Yoshua Bengio教授探討了AI對人類社會的意義,尤其在COVID-19疫情後時代,AI如何幫助未來的經濟社會更加富有彈性、宜居和可持續。
他們認為,AI是一個千載難逢的機會,人類得以真正從重複性事務中解脫出來。在 AI 的幫助下,我們將有希望希望建立一個明智、理性、包容的社會,構建人類社會與AI的良性循環。
他們討論的話題包括:
1、AI技術的下一個突破,如何加速AI從科研到應用轉化?
2、COVID-19疫情如何加速AI應用,由此帶來了什麼風險?
3、AI的責任和挑戰:如何促進未來社會經濟可持續發展?
4、你心目中理想的AI未來是什麼樣的?
▌深度學習2.0時代,提升機器理解和執行能力
話題1:AI技術的下一個突破,以及如何加速AI科研到應用
“接下來的研究雖然繁重,但新的進展會令人振奮。尤其是在深度學習領域,我稱其為‘深度學習2.0’。” ——Yoshua Bengio
Yoshua Bengio:第一個問題我非常有共鳴,在我看來,目前機器學習的一大限制,是學習系統的泛化能力。
過去幾十年研發的系統,都建立於一個假設,即預設測試數據與訓練數據有相同的數據分佈。
然而在現實世界中,無論在什麼行業應用,都會存在實際情況與AI訓練時不同的問題。
這一問題看起來無解,但目前我們找到了幾個突破點和想法,主要是借鑒人類的意識加工機制,對原本分散的知識積累,快速進行全新重組。
雖然這些知識的組合不一定遵循訓練數據分佈,但我們還是能從中獲得某種重組方向的優勢,從而在訓練分佈中進行更好的歸納。
接下來的研究雖然繁重,但新的進展會令人振奮。尤其是在深度學習領域,我稱其為“深度學習2.0”,它能吸收人類的歸納傾向,對數據分佈演算法進行泛化。
李開復:我借 Bengio 教授的觀點多說幾句。我從大學時期就開始著手會話式 AI 的研究。目前的人機界面,我稱之為委託界面,大多基於直接操作,如鍵盤、滑鼠、多點觸控等。
但語言是人類最基本的交流方式,也是最自然的交流途徑。向AI語音辨識、自然語言理解進軍,一直是我們孜孜以求的目標。
例如,以前我們使用搜尋引擎時,會通過輸入關鍵字來查找網頁。後來,Google帶來了新的突破,基於深度學習的智慧問答功能,可以直接讓機器“說”出答案。
但我們不應止步於此,而是應該繼續向下一步目標努力:通過深度學習的進一步研究,提升機器對人類指令意圖的理解和執行能力。
例如,我們是否可以直接向亞馬遜 Alexa發送指令:“給我媽媽送個生日禮物”。之後,它將自動理出頭緒,流覽禮物,安排配送。它瞭解我的個人喜好,知道我能接受的價格範圍,也知道我媽媽是誰,住在哪裡,想要的禮物是什麼。
Yoshua Bengio:關於AI的行業應用,我做個簡短分享。我認為這是個很有難度的議題。困難來自兩方面:一是社會方面,二是技術方面。
在社會方面,從基礎科學研究,到最後產品研發階段,需要共同營造一種文化,讓研究人員可以擁有研究自由,從而取得真實的突破。在技術方面,我們需要一些軟體工具,讓技術從研發到生產這一轉化過程,盡可能的高效快速。
李開復:AI的行業應用,我將之分為兩大類:顛覆式和漸進式。
顛覆式是指引入 AI 會對行業造成顛覆性的結果,帶來天翻地覆的改變。
例如,自動駕駛將徹底改變運輸行業;Alexa某種程度上正在改變音箱行業;新的互聯網保險應用,比如美國的Lemonade,極可能顛覆保險行業。
這些行業已經具備了一定的條件,讓行業專家通過 AI 帶來顛覆影響,讓人非常期待。當AI與行業的顛覆式創新兩相結合,將有機會擊敗行業巨頭,重整行業格局。
然而顛覆式只是冰山一角。在人工智慧帶來的巨大機會中,漸進式變革佔據絕大部分份額。
普華永道預估,人工智慧將在2030年給全球帶來15萬億美元的財富淨增,主要來自于傳統行業和AI的結合。由於傳統行業規模龐大,僅僅提高幾個百分點,就可以產生海量財富。
但困難在於,當前一些傳統企業對 AI 一無所知,他們以為AI是科幻小說的臆想,看不到即刻就能產生的收益,再加上技術工具太難使用,導致他們的 IT 部門無法駕馭。
因此,我們應該通過培訓,説明傳統行業接受並認識到AI的益處。同時,我們投資的AI企業或像 Element AI 之類的公司,需要幫助傳統企業找到簡單易用的工具,讓他們跨越技術鴻溝,上手即用。
▌AI提前預測傳染性,應權衡公共衛生與隱私保護
話題2:疫情如何加速AI應用,由此帶來了什麼風險?
“必須在公共衛生或個人健康的背景下考慮隱私,在公共衛生危機期間,國家應該在尊重權利和必要防控措施間加以權衡,從而有效控制疾病的傳播。”——李開復
李開復:我說幾個親身經歷的例子。疫情期間的社交隔離,催生了眾多的 AI 應用,例如醫院中的送貨機器人。
對於隔離中的人也一樣。前陣子我回到北京隔離時,在我居住的公寓樓裡,沒有見到一個人。所有的事情都交給了一台機器人代勞,包括網購的包裹和食品運送,真正實現了零接觸,將危險降到最小化。
第二個例子是AI與醫療的結合。我們投資的AI 醫療企業Insilico Medicine,主要使用生成化學對抗神經網路,研發新藥小分子。在疫情期間,他們通過AI平臺,用幾個星期的時間,研發出了能抑制病毒內負責複製的主要蛋白成分的新藥物小分子。
最後一個例子或許有些爭議,就是接觸者追蹤。世界上許多國家已經成功的建立了接觸者追蹤體系,並較為有效地控制了疫情蔓延。但在美國、歐洲等地方,這種做法被視為是對隱私的侵犯。
對此,我的觀點是,對那些重視隱私的國家,我表示完全理解和尊重,但是我認為必須在公共衛生或個人健康的背景下考慮隱私。在公共衛生危機期間,國家應該在尊重權利和必要防控措施間加以權衡,從而有效控制疾病的傳播。等到疫情結束後,再回歸正常。
我們都不希望重蹈疫情的覆轍。我預計在未來,AI將被用來預防流行病的發生和傳播。醫院將廣泛使用感測器、可穿戴設備,匯總疫情資訊,及時報告潛在危害,在早期遏制疫情指數級增長的趨勢,從而更好地應對危機,避免再次失控。
Yoshua Bengio:李開復博士提到的這幾個領域,我都有所涉及。
一個是藥品研發,我本人參與了幾個專案,其中涉及神經網路、即時強化學習和主動學習。
在化學和生物領域,需要進行測試的組合方式太多,逐個進行研究是不可能的。所以我們需要一個合理的搜索策略,這就是我現在參與的專案內容。我們希望能用AI縮短研究時間,通過重組已有藥物,研發新型抗病毒藥物。
在接觸追蹤方面,目前已有的接觸追蹤大都沒有用到AI,只是進行簡單的測試法:如果有人測試結果為陽性,或者確診感染,那麼與其接觸過的所有人,都應該採取隔離措施。但是,在測試為陽性進而被隔離之前,傳染就已經開始了。
我們的一項研究顯示,如果能借助機器學習,提前預測某個體是否具有傳染性以及傳染性強弱,透過一些模糊的數據分析,就能大幅節省等待時間,及早知道曾接觸過病毒攜帶者,從而抑制病毒的傳播。
當然不可避免會出現隱私問題。隱私保護與機器學習需求之間存在有趣的矛盾。隱私保護需要盡可能降低數據交換,而機器學習卻需要盡可能收集大量的數據。
許多國家非常擔憂接觸者追蹤的濫用會侵犯隱私,因此催生了許多隱私保護技術。好消息是,這兩者可以共存。
▌AI是把雙刃劍,應推動全球治理、改變文化
話題3:AI的責任和挑戰:如何促進未來社會經濟可持續發展?
“如果我們能對人工智慧的能力善加利用,就能更快速地找到更好的新材料,以取代現今對地球造成長期污染的碳、電池等毒性材料。”——Yoshua Bengio
李開復:我會從創新工場的角度舉一些例子,創新工場是一家創業投資公司,我們非常希望 AI 能得到合理應用。Bengio 教授可能會在氣候變化上再補充一些。
在 《AI新世界》一書中,我描述了一個人類與 AI 的共存的藍圖:由 AI 承擔優化常規工作,讓人類專注於需要創造力和同情心的工作。
從社會責任感的角度說講,AI與醫療和教育的結合,將帶來極大的社會福祉。
未來,醫生將成為富有同情心的護理者,深切關懷病患,與他們交流。而 AI 可以用於分析放射結果、MRI、CT報告,提出各種可能的診斷及治療結果,針對性推薦藥物,以及輔助科學家研發新藥。
教育行業也是這樣。我們投資了很多線上教育公司,發現 AI 在教師的常規工作上表現非常出色,能夠根據學生的特點,因人而異地佈置作業,幫老師們節省了時間,讓他們專注于為孩子指導能力和引導心靈,進行個性化的教育,幫助他們培養創造力、團隊合作能力、交流能力以及同情心。
所以,醫療和教育既是 AI能夠顯現優勢的領域,也是有價值的投資。目前這兩個領域正在蓬勃發展,我們也投入了大量精力和資金。
Yoshua Bengio:我完全同意李開復博士的觀點。AI 技術的進步,能夠造福大多數人,我們需要將大量精力投入到此類項目中。
我個人對用AI解決環保問題投入很多,目前正在參與的一個項目就和氣候危機相關。
我們使用類似新藥研發的AI演算法,應用在對抗全球氣候環境變化的艱巨挑戰上,生成、合成、評估各種新型材料技術,包括碳回收和電池。
正常情況下,這些新材料研發耗時極長,動輒十幾年,甚至比新藥研發的時間還要久。但是如果我們能對人工智慧的能力善加利用,就能更快速地找到更好的新材料,以取代現今對地球造成長期污染的碳、電池等毒性材料。
但是,我們同時應該保持警惕:如果AI僅被少數市場玩家掌握,也有可能被用做牟利的工具,破壞正常、自由、動態競爭的市場環境。
因此,在向AI 未來發展的路上,我們需要時刻謹記 AI 具有的社會危害性。要將AI治理落實到各個層面,小到公司,大到全球。只有具備放眼全球的管理,才能合理有效地協調所有的力量,一起應對這些挑戰。
如果我們真的想引導 AI 應用富有道德和責任,就必須改變現有的文化。而這依賴於所有人的努力。
政府必須參與其中,要投資好的技術應用,改變教育體系,讓工程師、科學家不只專攻特定的科技領域,還要具備足夠的社會學科知識;科學家必須懂得謙虛,認識到自己對專業以外的領域知之甚少,與其他不同領域的專家合作,保證自己的成果對社會產生正面的影響。
▌構建AI與人類社會的良性循環
話題4:你心目中理想的AI未來是什麼樣的?
如果我們能努力抓住人類與 AI 共存的機遇,思考人類存在真正的意義,從我們這一代便開始努力,最終將可以實現理想的AI未來。——李開復
Yoshua Bengio:未來,在 AI 的幫助下,我們可以建立一個更明智、更公平、更理性、更包容的社會,每個人都可以說出自己的觀點,進行充分辯論,再做出最佳決定。
社交媒體在誕生之初,本意是做一個最為透明、最為公平、普惠大眾的公眾傳播平臺,但由於演算法基於人類偏好的推薦,及帶有特定企圖的傳播者作祟,造成社交網路的破碎淩亂,煽動的、謬誤的、偏見的資訊被放大傳播,不僅沒法幫助我們理性討論,也欠缺幫助人們做出最佳集體決策的能力。
人工智慧應該在這一方面有所作為,從各種垃圾資訊中篩選出有用結果,讓社交
平臺更加智慧,做到真正的公正透明,推送社會的理性和包容。
反過來說,如果我們都能變得更理智,也就能更好地使用 AI 技術,就能構建一個良性循環。但如果應用不當,就可能陷入惡性循環,因此我們必須謹慎選擇。
李開復:Bengio教授說得太好了!我們是幸運的一代,AI是一個千載難逢的機會,人類能夠與AI共存合作,由AI來承擔常規事務,我們則專注於人類擅長的領域,從重複性事務中解脫出來,放手去做自己喜愛的事情。
我想用我心愛的、約翰·亞當斯的一首詩來結束這場分享。如果我們能努力抓住人類與 AI 共存的機遇,思考人類存在真正的意義,從我們這一代便開始努力,最終將可以實現理想的AI未來:
I must study politics and war
我必須研究政治和戰爭
that my sons may have liberty to study mathematics and philosophy
因此我的兒子們能夠學習數學和哲學
My sons ought to study mathematics and philosophy, geography, natural history, naval architecture, navigation,commerce and agriculture
我的兒子們應該學習數學、哲學、地理、博物、造船、航海、商業和農業
in order to give their children a right to study painting, poetry, music, architecture, statuary, tapestry and porcelain
使得他們的孩子們可以學習繪畫、詩歌、音樂、建築、雕塑、織物和瓷器
約翰·亞當斯,美國第二任總統,《獨立宣言》起草委員會的五個成員之一,被譽為“美國獨立的巨人”。
本文及視頻內容經主辦方 SGInnovate 同意翻譯轉載
李佳翰深度學習 在 NCTU-Teacher - [心得] 電信所李佳翰深度學習 - Mo PTT 鄉公所 的必吃
課名⊕ (中文) 深度學習(英文) Deep Learning △教授△ 李佳翰☆修課年度☆ 111-1 £教了什麼£(課程大概內容。或是額外學會了什麼東西。) ... <看更多>
李佳翰深度學習 在 徵李佳翰深度學習考古- 交通大學板 - Dcard 的必吃
徵李佳翰深度學習考古. 交通大學. 2022年12月2日03:48. 如題請問有人能分享一下考古題嗎或是大概考甚麼類型的題型意者可以開卡稱讓我私訊給你提供一點小禮物. ... <看更多>
李佳翰深度學習 在 [心得] 電信所李佳翰深度學習- 看板NCTU-Teacher - 批踢踢實業坊 的必吃
⊕課名⊕
(中文) 深度學習
(英文) Deep Learning
▲教授▲
李佳翰
★修課年度★
111-1
£教了什麼£(課程大概內容。或是額外學會了什麼東西。)
主要是講述MIT學者Goodfellow的經典(花書)
◆上課方式◆(投影片、團體討論、老師教學風格)
因為疫情採用遠距離上課,不太會點名,有問題的話可以在聊天室發問
不過這門是全英文授課
▼考試作業▼
個人作業30%(三次/一次10%)
期中考 30%
團體報告 15%
期末專題 25%
¥其他¥(是否注重出席率or嚴禁遲到?需要的基礎?)
需要的基礎大概就是機率線代跟一點機器學習的底還有 python 的語法
個人認為可以跟機器學習一起修,影響不大
第一次作業需要手刻傳統的 MLP (DNN)做分類
第二次作業是CNN用來分類 MNIST 資料集
第三次是RNN 用來生成莎士比亞作品集
後面兩次作業都可以使用現成的套件,因此我覺得反而是第一次作業比較吃力
期中考則注重在名詞解釋的部分,有一題的傳統的前向傳播跟 BP 要去算不同節點的梯度
還有一些常見的數學公式要背起來,有一大題考原文書挖空,問不同的函數得到的結果
其他則是不同算法之間的比較跟差異、優劣等,可以從這幾個方向去做準備(題目會收走)
所以沒有考古題,需要注意的一點是要用全英文作答,如果用中文寫成績會打八折
班平均落在60分上下
團體報告的部分則是抽不同的 paper來報,這次是實體出席
期末專題則是打 Kaggle 競賽,今年是做 CIFAR 10 的分類
上傳csv檔就可以 (不會檢查程式碼)
第一名的組別最高分100分,第二名97,以此類推,最後一名也有 55分
所以都會有分數不用太擔心
最後調分個人是被調了兩個級距 (82.4 -> A+)
¢最後想說的話¢
期末競賽很多組別的成果最後的accracy都差0.幾%,但差一個名次就差三分
這部分要再注意一下
報paper他分數都給蠻高的
個人作業給分也不會太刁難,大概一個周末就可以幹完
基本上除了期中考跟期末專題外其他的loading都不會太重
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 140.113.0.229 (臺灣)
※ 文章網址: https://www.ptt.cc/bbs/NCTU-Teacher/M.1674558322.A.9D7.html
... <看更多>