海藻糖的知識加 #文章非常長 #資料很齊全
資料來源:A+醫學百科
http://goo.gl/xXoizt
海藻糖(Trehalose)是一種安全、可靠的天然糖類,1832年由Wiggers將其從黑麥的麥角菌中首次提取出來,隨後的研究發現海藻糖在自然界中許多可食用動植物及微生物體內都廣泛存在,如人們日常生活中食用的蘑菇類、海藻類、豆類、蝦、麵包、啤酒及酵母發酵食品中都有含量較高的海藻糖。
海藻糖是由兩個葡萄糖分子以α,α,1,1-糖苷鍵構成的非還原性糖,自身性質非常穩定,並對多種生物活性物質具有神奇的保護作用。科學家們發現,沙漠植物卷葉柏在乾旱時幾近枯死,遇水後卻又可以奇蹟般復活;高山植物復活草能夠耐過冰雪嚴寒;一些昆蟲在高寒、高溫和乾燥失水等條件下不凍結、不幹死,就是它們體內的海藻糖創造的生命奇蹟。海藻糖因此在科學界素有「生命之糖」的美譽。國際權威的《自然》雜誌曾在2000年7月發表了對海藻糖進行評價的專文,文中指出:「對許多生命體而言,海藻糖的有與無,意味著生命或者死亡」。
海藻糖對生物體具有神奇的保護作用,是因為海藻糖在高溫、高寒、高滲透壓及乾燥失水等惡劣環境條件下在細胞表面能形成獨特的保護膜,有效地保護蛋白質分子不變性失活,從而維持生命體的生命過程和生物特徵。許多對外界惡劣環境表現出非凡抗逆耐受力的物種,都與它們體內存在大量的海藻糖有直接的關係。而自然界中如蔗糖、葡萄糖等其它糖類,均不具備這一功能。這一獨特的功能特性,使得海藻糖除了可以作為蛋白質藥物、酶、疫苗和其他生物製品的優良活性保護劑以外,還是保持細胞活性、保濕類化妝品的重要成分,更可作為防止食品劣化、保持食品新鮮風味、提升食品品質的獨特食品配料,大大拓展了海藻糖作為天然食用甜味糖的功能。
海藻糖是運用當代最先進的生物工程技術和生產工藝,採用按國際製藥標準建造的成套設備,以當地特有的不含轉基因成分的天然木薯澱粉為原料,在國內首家以規模化形式生產海藻糖,產品指標達到國際同類產品標準。先進的生產工藝技術和完整的質量保證體系為國內外市場提供了質量過硬、價格合理的海藻糖系列產品,使生物製劑、化妝品、烘焙產品、水產畜產加工、米面製品、飲料和糖果以及農林種植等各個行業廣泛受惠。
應用
1.海藻糖在食品工業中的應用:
與其它糖類一樣,海藻糖可廣泛應用於食品業,包括飲料、巧克力及糖果、烘烤製品和速凍食品。
●烘烤製品類
在烘烤製品中,海藻糖有多種潛在的使用價值:它能調節蛋糕、餅乾和糕點上的糖霜、麵包奶油和水果餡的甜味與芳香,不損害貯藏壽命,使人們品嘗到產品原有的風味。
同時,海藻糖有助於甜餅、麵包奶油和糖霜中脂肪的降低,在可口餅及快餐中產生獨特的糖霜感覺。它使消費者因良好的甜質更容易接受含高脂肪和糖的高熱量產品。在保持產品貯藏期時,海藻糖能減少多成 分的烘烤製品中濕氣流動,以能使甜味更佳。
●糖果類
海藻糖與其它大多數增甜劑混合,可在糖果、果汁飲料和藥草產品中使用,以調節產品甜質,從而能真正保持產品的原有風味。
海藻糖用作糖果的外層可形成一種穩定的非吸濕性保護層。由於 性質的穩定性,海藻糖能在長期高溫下進行而不用擔心水解和色變,不負面影響產品品質。
滾海藻糖衣性能極好。海藻糖特有的溶解特性能真正使它們本身滾動形成保護層,這層覆蓋物極穩定、堅固,從而改善其它大多數增甜劑相對的白色層面。
●能量產品類
海藻糖被分解成葡萄糖,但與其他糖相比,海藻糖的血糖反應更平穩,這種獨有的特性結合它低致齲性和非瀉下性作用,使得海藻糖極適用於按配方製造的飲料,以提供能量和減輕疲勞與壓力。
●功克力糖果類
在巧克力糖果中使用海藻糖,能調節糖果的甜味,特別有益於含有乳製品的軟糖及含水果餡的產品,海藻糖還能減少多成分產品中水分游離。在模製品中,海藻糖對產品甜味的改善為創造新 口味巧克力提供了可能性。
由於它致齲性的降低,作為主要的增甜劑或結合其他低致齲性增甜劑,海藻糖可用於按配方配製益牙產品。特級海藻糖可和多元醇合用於製取巧克力,其溶解時 吸收的熱量可使多元醇的冷卻效應降到最低。
●水果類
在經加工過的水果(包括果醬、調味果醬和果餡)中,海藻糖是一種最好的甜味調節劑。在水果類製品中添加海藻糖能夠保持產品的原有風味 但不損害產品貯藏期。
另外,由於海藻糖性質的穩定性,不會產生水解,產品色澤不變並保持原有光澤。
海藻糖能用於佐料和可口果醬,通過調節甜味來產生風味感,同時保持產品貯藏壽命。
●速凍品類
海藻糖可代替蔗糖,降低冰淇淋和其他冷凍製品的凝結點。可在凍品和冰凍糖果中用於產生新的糖霜,併產生獨特的可口的風味。
●飲 料
海藻糖在飲料品中微甜口感好,能與其他大多數增甜劑結合使用,使其甜味更完善,可全面提高產品風味。在含酒精的飲料中,海藻糖不損減酒精的感官性能, 使飲料風味更佳。
●海鮮
海藻糖作為一種對海鮮的低溫保護劑特別有效,當海藻糖在蛋白質、水界面絕對抑制水的官能度時使海鮮的硬度、伸縮性及凝膠力增加,另外海藻糖的微甜 性質也提高了海鮮的口感質量。與其他的低溫保護劑用於處理海鮮不同,海藻糖不會導致喉嚨熾熱感,且沒有瀉下問題。
2.海藻糖在醫藥工業中的應用:
(1)在醫學上已經成功地應用海藻糖替代血漿蛋白作為血液製品、疫苗、淋巴細胞、細胞組織等生物活性物質的穩定劑。不僅可以常溫條件下乾燥存放,更重要的是可以防止因血源污染而引起B肝、愛滋病等致命疾病的傳播,世界衛生組織對此十分重視。
(2)英國劍橋的Quadrant研究基金會將小兒麻痹症疫苗與海藻糖混合凍干後,發現在乾燥狀態下45℃時其穩定性和液態4℃保存條件時相當。這項目研究成功,將大大減化疫苗處理工序,降低疫苗的貯存及運輸成本,且保證了長距離運輸疫苗仍可保持相當高的活性,這將會大大有助於世界衛生組織實現在最大範圍內消滅小兒麻痹症的目標。
(3)美國加利福尼亞大學的約翰•克勞及其同事將海藻糖與製造血小板的細胞混合,經乾燥脫水使細胞變干後,將其凍干在室溫下可長時間保存。實踐證明,加入海藻糖並經長時間保存的血小板在水化後仍有85%存活,存活率比大多數血庫短期保存的血小板還高。
(4)海藻糖可應用於研究用生物試劑的保存,例如各種工具酶、細胞膜、細胞器、抗體、抗原及病毒等等,使得生命科學研究更為方便快捷有效,英國大學Camilo.C等詳細的研究了海藻糖對DNA限制性內切酶DNA連接酶和DNA聚合酶的保護作用,結果表明,所有加入海藻糖乾燥的酶樣,在70℃保存35天或在37℃保存9個月後,其活力並無損失,仍能精確的將DNA截斷。我國中科院微生物研究所應用海藻糖乾燥製備、用於人血清膽固醇測定的三種診斷工具酶,在室溫下長期保存後,活性保持率都在90%以上,現已成功的進入於臨床應用。這是目前其它種類的保護劑都不可能達到的效果,利用海藻糖作為診斷工具酶等生物試劑的穩定劑和保護劑,可置於常溫條件下乾燥並保存,不僅簡化了生物試劑的製備過程,也給我國幅員廣大的農村地區患者的疾病診治帶來便利。
(5)雙岐桿菌是腸道中用於改善人體微生態平衡的細菌,雙岐桿菌活菌製劑作為防病治病的有力武器,在歐美日本等已開發國家倍受歡迎。在我國,雙岐桿菌活菌製劑已逐步成為製藥行業的一支生力軍。由於雙岐桿菌是一種對生存條件要求極為苛刻的厭氧菌,外界環境稍有變化就易引起該菌的死亡,因此,如何提高雙岐桿菌的存活率,保證產品的貨架壽命,一直是困擾活菌製劑行業的技術難題。目前普遍是採用脫脂牛奶作凍干保護劑,但效果不甚理想,在儲存過程中,細菌的存活率下降很快。近期的研究結果表明,採用海藻糖作保護劑,雙岐桿菌的存活率比脫脂牛奶提高一倍以上,特別令人振奮的是,海藻糖能夠使凍干雙岐桿菌在常溫下長期保持活性,大幅度延長活菌製劑的保質期。從而可以解決活菌製劑行業所面臨的產品儲存性能差,貨架壽命短的問題。
(6) 應用實例
1)、從液態製品製備固態製品
將500克無水海藻糖、270克用以上方法製成的蛋黃粉、290克脫脂奶粉、4.4克氯化鈣、1.85克氯化鉀、0.01克硫氨素、0.1克抗壞血酸鈉、0.6克乙酸維生素和0.04克煙酸胺混合後,每份取25克放入防水鋁箔袋內,熱封好,即製得該固態製品。因袋內空氣含水量少,該產品勿須冷藏,在室溫狀態下就可長期穩定存放。其具有良好的水溶性及分散性,使用前只需將1小袋該固態品溶於約150-300ml水製成流質食品,吸入體內或灌入鼻腔、胃或腸內即可。
2)、製備固體醫藥品
為了做BALL-1細胞的皮下移植手術,在剛產下的田鼠體內注入用傳統方法製取的免疫血清,以減少其免疫反應,按一般方法餵養3周後,取出田鼠皮下形成的腫瘤,將其切成小片,然後把小片分散溶在生理鹽水中。溶出的腫瘤細胞用無血清的RPMI1640培養基(pH值7.2)清洗後,再將其溶在新配製的同一種培養基中,稀釋培養液濃度至每毫升含2×106個細胞,並在35℃下保存。
在細胞懸液中加入200IU/ml人體a-干擾素,培養約2小時後,加入300HA/ml HVJ,再培養20小時,誘導培養體產生更多的人體a-干擾素。將細胞培養液在4℃、1,000×g條件下離心,去除沉澱物,上清液用膜過濾,把濾液加進一裝有防a-干擾素抗體的層析柱中,再加入緩衝液使未被吸收的組分流出,隨後把被柱子吸收的組分洗脫出來並濃縮成濃度約為0.01w/v%的人體a-干擾素溶液,其中的人體a-干擾素的比活力約為2×108Iu/mg蛋白,每隻田鼠可製得約4ml a-干擾素。
將6克無水海藻糖裝進100ml的防潮塑料瓶中,再往瓶中注入0.2ml約含4×106IU的人體a-干擾素溶液,用橡膠塞給瓶子無菌封蓋,這樣就可製得固體醫藥品。根據其製備過程,含人體a-干擾素的溶液經和無水海藻糖接觸,就很容易脫水乾燥,其不需冷凍乾燥,就能使固體製品的a-干擾素穩定高效。
該產品易溶於水,其中的人體a-干擾素可作為一種抗敏性試劑(如:抗病毒試劑、抗腫瘤試劑和抗風濕症試劑等),經滴注或肌注進入人體內,有效地預防或治療多種疾病。該產品適用於內科,還可作口腔試劑及診斷劑。
3)、製備固體醫藥品
將源於人體淋巴素的BALL-1細胞接種到加入20%的胎牛血清的Eagle基礎培養基(PH值7.4)中,按照常規方法在37℃的懸浮體中培養,培養出的細胞用無血清的Eagle基礎培養基(PH值7.4)清洗後,將其倒入新配製的含20%胎牛血清的Eagle基礎培養基中,並濃縮至濃度為1×107cells/ml。在溶液中加入1, 000HA/ml HVJ,在38℃下恆溫培養24小時,使HVJ誘變成a-hTNF。將製得含a-hTNF的細胞懸液在4℃,1,000×g下離心,上清液在含0.01M磷酸鹽緩衝液的生理鹽水中透析15小時後,用膜過濾。為純化a-hTNF溶液,將濾液加入一個裝有抗干擾素抗體的柱子中,把未被柱子吸收的組分倒進一裝有抗腫瘤壞死a-基因單株抗體、具有親和性的層析柱中,洗脫出被層析柱吸收的組分,得到a-hTNF溶液濃度至0.01w/v%,其中a-hTNF的比活力大約為2×106JRU/mg蛋白。這樣a-hTNF的得率約為5×104JRU/L細胞培養液。
將10克無水海藻糖裝入100ml的瓶中,再注入0.5ml含1×105JRU a-hTNF的溶液,用橡膠塞無菌封蓋後,即可製得該產品。用以上方法製得的藥品,粉末狀無水海藻糖吸水使a-hTNF的溶液脫水乾燥,不需經冷凍乾燥處理,就能使a-hTNF穩定高效。
該產品易溶於水,a-hTNF可作為一種抗敏性試劑(如:抗病毒試劑、抗腹腫劑及抗免疫疾病劑等),經滴注或肌注進入人體內有效地預防或治療多種疾病。該產品適用於內科,也可作口腔試劑及診斷劑。
3.海藻糖在化妝品中的應用:
海藻糖在化妝品上的應用是基於其具有優異的保持細胞活力和生物大分子活性的特性。皮膚細胞,尤其是表皮細胞在高溫、高寒、乾燥、強紫外線輻射等環境下,極易失去水分發生角質化,甚至死亡脫落使皮膚受損。海藻糖在這種情況下能夠在細胞表層形成一層特殊的保護膜,從膜上析出的粘液不僅滋潤著皮膚細胞,還具有將外來的熱量輻射出去的功能。從而保護皮膚不致受損。隨著人們對海藻糖功能和作用的認識,海藻糖作為新一代的超級保濕因子將成為化妝品市場消費的一個熱點。目前,國內外已有不少廠家成功將海藻糖添加到化妝品中。海藻糖在化妝品中使用參考如下:
2克聚氧乙烯乙二醇單硬酯酸脂,5克自乳化甘油醯硬酯酸脂,1克a-葡糖芸香苷,1克液體凡士林,10克甘油三(2-乙基己酸)酯,將這些物質與2克藻糖粉末混合,按一般方法加熱溶解,得到的溶液加進2克L-乳酸,5克,3-丁二醇及66克純淨水。此反應溶液經高速攪拌器乳化,再在高溫條件下加進足量的調和劑,即得到化妝霜。
超級防晒保濕因子—海藻糖
海藻糖是一種天然的糖類,存在於許多沙漠植物中,在植物乾枯時形成一層玻璃狀的基質,保護其內部結構,直至雨水來到,植物可奇蹟般地起「死」而復生。
大量的研究與實踐表明,海藻糖能有效地保護表皮細胞膜結構,活化細胞,調理肌膚,令肌膚健康自然、有彈性。表皮細胞在高溫、高寒、乾燥、強紫外線輻射等環境下,極易失去水分而使皮膚受損,海藻糖在這種情況下能夠在細胞表層形成一層特殊的保護膜,保持皮膚原有營養和水分,避免皮膚晒傷及黑色素沉澱,有效抵抗皮膚老化現象;從膜上析出的粘液可溫和滋潤肌膚,使肌膚瑩亮、光澤、柔嫩。
目前國內外一些比較著名的化妝品企業,如范思哲系列化妝品、雪白系列化妝品、草木年華海藻糖活泉補水系列化妝品等都已將產品中的海藻糖作為產品宣傳的重點內容。
海藻糖是藥品還是糖類?
海藻糖是由兩個葡萄糖分子以a,a,1,1-糖苷鍵構成非還原性糖,自身性質非常穩定,海藻糖對生物體具有神奇的保護作用,是因為海藻糖在高溫、高寒、高滲透壓及乾燥失水等惡劣環境條件下在細胞表面能形成獨特的保護膜,有效地保護蛋白質分子不變性失活,從而維持生命體的生命過程和生物特徵。許多對外界惡劣環境,表現出非凡抗逆耐受力的物種,都與它們體內存在大量的海藻糖有直接的關係。和自然界中如蔗糖、葡萄糖等其它糖類,均不具備這一功能。這一獨特的功能特性,使得海藻糖除了可以作為蛋白質藥物、酶、疫苗和其他生物製品的優良活性保護劑以外,還是保持細胞活性、保濕類化妝品的重要成分,更可作為防止食品劣化、保持食品新鮮風味、提升食品品質的獨特食品配料,大大拓展了海藻糖作為天然食用甜味糖的功能。
海藻糖對生物酶製劑中反應中激活劑與穩定劑
溫度是影響酶反應效率的重點因素之一,高溫能提高酶的催化活力,但易使酶失活。耐熱酶的發現為分子生物學帶來巨大的進步,如PCR和連接酶鏈式反應的產生,目前局限於從一些耐熱菌中分離得到耐熱酶,而且酶催化反應類型也受到限制。研究發現海藻糖在高溫下能保持酶的正常活性,甚至起熱激活作用,還能用於提高幹燥保存的酶的活性。在反應體系中加入海藻糖,使熱敏感的酶在高溫下穩定性和活性增加,可當作耐熱酶使用,海藻糖的這一作用在生物藥學和工業生產領域具有廣泛的應用價值。 未加海藻糖的限制性內切酶Nocl在溫度由45℃升到50℃時失活,加了海藻糖時酶不但不失活而且活力繼續升高,說明海藻糖能抑制高溫下酶的失活;37℃時海藻糖能夠激活DNasel,加了海藻糖,溫度升到50℃時酶活力仍顯著升高;豬的胰脂肪酶在無水海藻糖介質中可以耐受100℃高溫,有水時則會失活。有實驗表明海藻糖通過影響蛋白水合作用來穩定和激活蛋白,它可以降低溶液中蛋白質的水化作用,乾燥時則能取代水或作為玻璃樣穩定劑。海藻糖能阻止酶發生不可逆的熱凝聚-熱變性,與分子伴侶的功能相類似,實驗中將一些分子伴侶與海藻糖共同使用,能進一步擴大對酶具有熱穩定和熱激活作用的溫度範圍。另外海藻糖並不是對檢測的所有酶都有熱穩定和熱激活的作用,說明只有一些蛋白可能具有海藻糖識別和作用的位點。 獲得全長cDNA文庫,有利於分子克隆和全長cDNA測序,反轉錄反應是構建cDNA文庫的重要反應,mRNA的二級結構能夠終止反轉錄反應,釋放mRNA/非互補cDNA雜合體,導致合成全長cDNA效率很低,這是構建高質量的cDNA文庫最主要的問題。以前解決這一問題主要是在反應前使樣品變性,如熱變性、加氫氧化甲基汞處理mRNA等或者反應中提高反應溫度。前一類方法對破壞mRNA二級結構效果不佳,特別是從長轉錄產物獲得全長的cDNA,而後者雖然對破壞mRNA二級結構比較有用,但除了TchDNA聚合酶外,其它反轉錄酶者不耐熱,而TchDNA聚合酶催化反應需Mn2+,這容易造成mRNA在反應前就降解了。實驗證明海藻糖能使鼠白血病病毒逆轉錄酶具有熱穩定和熱激活特性,酶在60℃仍具有全部活性,足以在mRNA二級結構誘導終止反應之前合成全長的cDNA,反應效率大大提高。另外推測海藻糖可能具有改變核酸構型的作用,例如減少反轉錄反應中mRNA的二級結構。 生產中利用海藻糖熱穩定和熱激活的雙重功能,可以減少酶的用量和提高反應速率,提高消耗/產出和時間/產出比值,在一系列酶反應中都有很大潛力,如生化反應、診斷或工業生產領域,更重要的是熱激活能用於提高反應程度和總效率,獲得標準反應條件下不可能的產量。另外,利用熱穩定和熱激活的作用,可開發以前在常規反應條件下不可能進行的反應,例如專一性要求特別高的核酸雜交實驗,反應體系加入海藻糖,就可在適宜的溫度下同時使用幾種限制/修飾酶,提高雜交反應特異性,減少假陽性結果。
------------------------------------------------------------------------------------------------
同時也有1部Youtube影片,追蹤數超過80萬的網紅果籽,也在其Youtube影片中提到,面對嚴峻疫情,世界各地政府對疫苗寄予厚望,冀透過群體免疫阻止武漢肺炎病毒蔓延,但市民對疫苗的信心亦是抗疫一大挑戰,《健康蘋台》帶大家看看疫苗能否為2021帶來曙光。 疫苗的面世速度太快? 武漢肺炎大流行之前,一般疫苗由研發至上市平均需要10年時間,武漢肺炎疫苗一年多便做到,是否太過兒戲?根據歐洲藥...
單株抗體結構 在 國家衛生研究院-論壇 Facebook 的最讚貼文
➥【新冠病毒Delta變異株對中和抗體的感受性降低】:新冠病毒B.1.617變異株最早於2020年10月在印度發現,迄今已經成為流行於印度及英國最主要的病毒株,並持續擴散至各國。
B.1.617變異株包含3個主要的分支(B1.617.1、B.1.617.2 及B.1.617.3),這些變異株的棘蛋白上的N末端結構域(N-terminal domain,NTD)及受體結合區域(Receptor-binding domain,RBD)出現多樣的突變,有助其逃脫人體免疫系統的偵查及攻擊。
其中的B.1.617.2 (又稱為Delta變異株)更被認為較其它變異株具有更快的傳播速度。
此研究為法國團隊所進行,目的為了解Delta變異株對各種單株抗體(monoclonal antibodies)及COVID-19患者恢復期血清或疫苗接種者血清的感受性,並與其它病毒株進行比較。實驗所使用的Delta變異株分離自一位由印度返國旅客的咽喉拭子。
研究發現,Delta變異株對一些抗NTD及RBD的單株抗體具有抗性,如Bamlanivimab。Bamlanivimab的標的是RBD,Delta變異株的RBD上發生L452R突變導致單株抗體和棘蛋白的結合能力減弱,是Bamlanivimab無法有效中和Delta變異株的可能原因。
不過,Etesivimab、Casirivimab及Imdevimab單株抗體仍保有對Delta變異株的中和能力。患者感染COVID-19後12個月内所收集的恢復期血清對Delta變異株的中和能力相較於Alpha變異株(B.1.1.7)低了4倍。若只施打一劑疫苗(輝瑞BNT或AZ),僅10%的疫苗接種者血清可以中和Delta變異株。
但若接種兩劑疫苗後,95%的接種者血清都能產生對抗Delta變異株的中和抗體,不過效價相較於Alpha變異株低了3-5倍。因此作者推論,Delta變異株得以快速傳播可能與其具有逃脫抗棘蛋白抗體的能力有關...完整轉譯文章,詳連結:http://forum.nhri.org.tw/covid19/virus/j_translate/j2678/ ( 財團法人國家衛生研究院 吳綺容醫師摘要整理)
📋 Nature - 2021-07-08
Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization
■ Author:Delphine Planas, David Veyer, Artem Baidaliuk, et al.
■ Link:https://www.nature.com/articles/s41586-021-03777-9
〈 國家衛生研究院-論壇 〉
➥ COVID-19學術資源-轉譯文章 - 2021/08/03
衛生福利部
疾病管制署 - 1922防疫達人
疾病管制署
財團法人國家衛生研究院
單株抗體結構 在 國家衛生研究院-論壇 Facebook 的最佳貼文
「與台灣同行」—蛋白質疫苗的優缺點,和關鍵技術
高端疫苗是台灣首支與美國衛生研究院(NIH)合作開發的疫苗,與另一款美國生物科技公司諾瓦瓦克斯(Novavax)所研發的Covid-19疫苗同樣採取「蛋白質次單位技術」(即「基因重組蛋白技術」)。
■美國諾瓦瓦克斯(Novavax)同樣採用蛋白質次單位技術來研發疫苗
美國生物科技公司諾瓦瓦克斯(Novavax)表示,其研發的兩劑式Covid-19疫苗,在美國和墨西哥的第三期大型臨床試驗結果顯示,對有症狀感染具有逾9成的保護力,對中度至嚴重感染的保護力更達百分之百,且對全球主要變種病毒株的保護力也達9成。
根據美國全國公共電台(NPR)報導,美國藥廠諾瓦瓦克斯採用「蛋白質次單位技術」,這種疫苗與已在美國獲得緊急授權使用疫苗,其不同之處在於此種疫苗包含棘狀蛋白本身,人體無需再製造,再搭配一種輔劑,以強化免疫系統反應,可讓疫苗更具保護力。
《自然醫學》(Nature Medicine)期刊最新研究也指出,藉由以Covid-19復原患者血清的中和抗體濃度做比較,結果顯示七款Covid-19疫苗中,保護力最佳的是莫德納、諾瓦瓦克斯及輝瑞,其次分別為俄國衛星五號疫苗、AZ與嬌生,最後則是中國科興疫苗。
蛋白質重組技術過去曾用在B型肝炎與百日咳疫苗。台大醫院小兒感染科醫師李秉穎曾表示,蛋白疫苗不會像mRNA或腺病毒到處跑,該疫苗透過肌肉注射讓局部產生免疫反應,不會有過敏性休克或血栓等副作用;此外,蛋白質的物性比mRNA穩定許多,因此無須特殊冷鏈要求[1]、[2]。
■蛋白質疫苗的優缺點,和關鍵技術
蛋白質疫苗的目的,是讓「白血球看到『關鍵的』蛋白質」。在三十多年前,用純粹的病毒蛋白質做為抗原的首款疫苗-B 型肝炎疫苗上市。
相較於常聽到的 mRNA(如:莫德納)、腺病毒載體(如:牛津 AZ)、去活性(如:科興)疫苗等,使用純粹的蛋白質做為疫苗,有以下優點:
►使用歷史悠久
▪蛋白質疫苗開發至今,已累積了三十多年以上的接種經驗。
▪如我們熟悉的「B 肝疫苗」、「子宮頸癌疫苗」等。相較於 mRNA、腺病毒載體疫苗,蛋白質疫苗在臨床熟悉或民眾信任度上,更讓人放心。
►友善保存環境
▪蛋白質疫苗僅需 4℃ 保存。
▪相較於需要低溫冷鏈的 mRNA 疫苗,保存與運輸條件更便利。
►沒有血栓副作用風險
▪已知腺病毒載體疫苗(如牛津 AZ)有一罕見但致命的副作用:「血栓併血小板低下症候群(Thrombosis with Thrombocytopenia Syndrome, TTS)」。目前推測可能是由疫苗外洩之負電的核酸所引起,而蛋白質疫苗不含類似物質(帶負電之高分子),較無此疑慮。
►沒有整顆病毒的風險
▪歷史上曾發生幾件慘烈的疫苗事故,都與直接使用病毒的去活性有關。1955 年的美國,藥廠用整顆病毒製作小兒麻痺疫苗時,因為未能完全殺死病毒,也就是疫苗內仍有活病毒,結果導致 4 萬人染病、近兩百人癱瘓、10 名孩童死亡。蛋白質疫苗不使用整顆病毒,無此疑慮。
蛋白質疫苗也有天生的缺點:因為「不夠像病毒感染細胞」的過程,而產生的免疫力不足。所以此類疫苗中,有兩個關鍵成分:「抗原」及「佐劑(adjuvant)」。
►「抗原」讓白血球認識敵人
▪Novavax 疫苗抗原的特色,在於使用「修飾後穩定態的棘蛋白(spike protein)」。
▪從 2002 年的 SARS 後,科學家針對冠狀病毒累積了各類研究。他們發現,想對該病毒家族開發疫苗,「表面棘蛋白」是最好的抗原。
▪科學家可透過基因工程,讓細胞生產大量的目標蛋白質;大量的棘蛋白被生產,並黏著在奈米顆粒上,形成表面佈滿抗原的奈米粒子(30~40 nm)。而這種大小、仿似真實病毒的奈米粒子(virus-like nanoparticles, VLPs)設計,能誘使淋巴系統捕捉、進一步提升抗原被白血球吞噬、辨認的效果。
►「佐劑」模仿微生物入侵的信號,激發更強烈的抗體反應
▪Novavax 的佐劑(Matrix-M™)則使用了樹皮裡的東西。
▪皂樹(Quillaja saponaria)的樹皮萃取物:皂苷(Saponin),它能讓局部組織發炎、受損,模仿病原體入侵人體的反應,呼喚更多的免疫細胞到達現場、吞噬更多抗原[3]。
■次單位疫苗 ─「重組蛋白疫苗」
次單位疫苗是最近幾十年發展出來的技術,「次單位」意為只取病原體一部分結構製成疫苗。
作法有兩種:
▪一種天然的次單位疫苗,直接培養病毒再取出病原體一部分毒素,純化減毒後做疫苗。
▪另外一種是重組的次單位疫苗,又稱重組蛋白疫苗,這次國內3家疫苗廠,國光生技、高端疫苗及聯亞生技,研發的新冠疫苗即是「重組蛋白疫苗」。
「國家衛生研究院感染症與疫苗研究研究員暨生物製劑廠」劉士任 執行長解釋,所有的生物體包括病毒及細菌都有基因,也就是DNA,DNA製造RNA、RNA製造蛋白質,病毒或細菌外殼有很多不同表面蛋白,重組蛋白疫苗就是在病毒外殼的蛋白中,篩選出所需的病原蛋白質,以基因工程的技術,將蛋白質的DNA序列植入細胞培養,使細胞長出病毒蛋白質加以純化,再製成疫苗打入人體,讓免疫系統經由偵測到病毒蛋白產生免疫反應。
現在的B型肝炎疫苗跟HPV(人類乳突病毒)疫苗,都是用重組蛋白的技術來製成疫苗。但蛋白質純化需要時間,而且不同蛋白質純化技術不一樣,開發蛋白質疫苗需較長時間[4]。
■因應未來新興傳染病,長期備戰才是正解
冠狀病毒與流感病毒同屬RNA病毒,流感病毒由8條、冠狀病毒由1條RNA組成,它們的複製過程由於缺乏校對機制,容易累積突變。中研院基因體研究中心研究員馬徹分析,這就是RNA病毒如此善變難搞的原因,連研究了百年的流感,到現在都還找不到萬用疫苗預防或萬靈丹治療,更遑論是人類還很陌生的冠狀病毒,不過相關領域的科學家仍持續在努力。
新冠肺炎全球大流行,甚至有流感化趨勢,馬徹語重心長地說,這是全世界要一起面對的問題,大家不必過度恐慌!新冠肺炎不會是人類最後一個面對的新興傳染病,說不定10年後又有新疫情爆發,任何國家都要長期投資備戰,對於新興傳染病的相關研究是「養兵千日,用在一時」[5]。
【Reference】。
1.來源
➤➤資料
∎[1] (自由時報)「高端二期解盲成功》技術同門Novavax」:https://ec.ltn.com.tw/article/paper/1454103
∎[2] (自由時報)「諾瓦瓦克斯疫苗 保護力逾9成」:https://news.ltn.com.tw/news/world/paper/1454747
∎[3] (PanSci 科學新聞網)「Novavax 疫苗的優缺點?蛋白質疫苗的關鍵技術!」:https://pansci.asia/archives/323206
∎[4] (康健雜誌)「台灣新冠疫苗最快3月到貨,5張圖看懂疫苗怎麼做」:https://www.commonhealth.com.tw/article/83548
∎[5] (科技大觀園)「檢測、治療、疫苗——科學家抗疫總動員」:https://scitechvista.nat.gov.tw/Article/C000003/detail?ID=8800cc8c-085a-40b3-a127-98437cb071ad
➤➤照片
∎(康健)「台灣新冠疫苗最快3月到貨,5張圖看懂疫苗怎麼做」:https://www.commonhealth.com.tw/article/83548
∎「Vaccinating health and care staff」:
https://content.govdelivery.com/accounts/UKDEVONCC/bulletins/2b3f58d
2. 【國衛院論壇出版品 免費閱覽】
▶國家衛生研究院論壇出版品-電子書(PDF)-線上閱覽
https://forum.nhri.org.tw/publications/
3. 【國衛院論壇學術活動】
▶https://forum.nhri.org.tw/events/
#國家衛生研究院 #國衛院 #國家衛生研究院論壇 #國衛院論壇 #衛生福利部 #蛋白質疫苗 #高端疫苗 #諾瓦瓦克斯 #Novavax #蛋白質次單位技術 #基因重組蛋白技術
衛生福利部 / 疾病管制署 / 疾病管制署 - 1922防疫達人 / 財團法人國家衛生研究院 / 國家衛生研究院-論壇
Nature Medicine
單株抗體結構 在 果籽 Youtube 的最佳解答
面對嚴峻疫情,世界各地政府對疫苗寄予厚望,冀透過群體免疫阻止武漢肺炎病毒蔓延,但市民對疫苗的信心亦是抗疫一大挑戰,《健康蘋台》帶大家看看疫苗能否為2021帶來曙光。
疫苗的面世速度太快?
武漢肺炎大流行之前,一般疫苗由研發至上市平均需要10年時間,武漢肺炎疫苗一年多便做到,是否太過兒戲?根據歐洲藥品管理局資料,以往疫苗生產的程序依序為:臨床前研究、第一至第三階段臨床研究、監管審核、批准上市至大量生產的程序,各個環節分開進行,單是審批就可用上一年時間,過程冗長。
鑒於今次疫情嚴峻,監管機構很早就為研製武漢肺炎疫苗的藥廠提供科學咨詢,包括如何設計試驗及取得有效數據。研發過程有部分階段重叠,監管機構也採取滾動式審核(rolling review),即藥廠在試驗中途一有數據就開始評審,不必等到完成所有程序,節省時間。另外,藥廠也冒着可能失敗的風險,在第三期臨床研究階段便提前大量生產和簽約銷售,務求疫苗一經通過,可以馬上配送到醫務所,展開大規模接種。
疫苗預防率要打六折?
港府預購的三款疫苗,分別是上海復星醫藥代理、美國輝瑞及德國BioNTech合作的「BNT162b2」,由北京科興控股生物技術公司生產的「CoronaVac」,及英國牛津大學及阿斯利康共同研發的「AZD1222」。根據第三期臨床研究初步數據,三款疫苗的有效率:
「BNT162b2」95%(兩劑疫苗)
「AZD1222」70.4%(兩劑疫苗,不論劑量);90%(先低劑量;後高劑量);62.1%(兩劑全劑)
「CoronaVac」未有數據,相信超過50%
感染及傳染病專科醫生林緯遜解釋,疫苗研究的有效率是指預防病發(有病徵的武漢肺炎感染),而不是預防病毒接觸上呼吸道黏膜、在無病徵下複製及釋放病毒。「單純估計打疫苗後是否有機會感染,甚至在沒有病徵下傳播給別人的機會,確實要給有效率打個折扣。」政府專家顧問梁卓偉曾說,將疫苗效用換算做保護身體不受感染的能力要「打個六折」。林醫生指按世衞要求疫苗有效率達50%的標準,「複星疫苗及牛津疫苗就算打個折,保護力相當不錯。」
疫苗的基本原理
武漢肺炎病毒表面有一層包膜,與人類細胞融合便可感染人類。過程中,包膜上伸出的棘突蛋白(spike protein)首先會穿透細胞,猶如一把進入人體細胞的鑰匙,與人類細胞表面的「ACE2受體」結合。三款疫苗的主要功能,都是讓身體辨識病毒樣子,產生針對棘突蛋白的中和抗體(neutralizing antibody),使棘突蛋白失去功能。注射疫苗的常見副作用包括針口痛、肌肉痛、疲倦、腹瀉、頭痛、噁心。
科興滅活疫苗技術最成熟
三款疫苗當中,以科興「CoronaVac」使用的滅活疫苗技術平台往績最好,在季節性流感、小兒麻痹、甲型肝炎疫苗都用過,技術成熟,安全性高。惟林醫生指,滅活疫苗是將整個病毒透過加熱或化學處理殺死後注入體內,激發的免疫反應比較弱,相較其他技術平台,「抗體速度下降得比較快,保護時間較短,因此須添加其他佐劑成份,和施打加強劑補救,不過打幾多針、是否每個季度打,仍是未知之數。」
有人憂慮指滅活疫苗可能誘使免疫系統產生針對病毒其他蛋白的非中和抗體(non neutralizing antibody),導致免疫反應過量,出現抗體依賴增強反應(antibody-dependent enhancement),即從未染病人士接種疫苗後自然感染病毒,體內的非針對性抗體反而有利致病,使病徵更嚴重。林醫生解釋,登革熱疫苗曾出現此情況,故只建議曾染病人士接種登革熱疫苗,不過科興疫苗的臨床前研究有提及沒有此現象,待第三期研究數據可再判斷。事實上,此現象也可能於二次感染或遇上疫苗耐藥性病毒時出現。
復星疫苗產生抗體較精準
復星「BNT162b2」已經在英美展開大規模接種計劃。其mRNA技術是將經基因改造的病毒棘突蛋白核酸段(mRNA)注入身體,指導身體製造無害的棘突蛋白,引起免疫反應產生抗體,日後遇上病毒就能抵抗。林醫生解釋,mRNA技術的優點在於產生的抗體比較精準,因此免疫反應也較強。
不過,這項新技術以往未曾有大規模接種計劃使用過。「這是第一隻商業註冊mRNA疫苗,中長期影響未明,始終臨床研究只有數萬人,當提高接種率至幾千萬人,個別體質不同,罕見問題可能在接種兩個月後才出現。」過去一個月,英美報告數宗過敏反應個案,表徵包括呼吸困難及紅疹,懷疑與疫苗穩定劑成分聚乙二醇有關,當局建議有過敏史人士接種後留院半個鐘觀察。
牛津疫苗採用實驗階段技術
牛津「AZD1222」採用不可複製的黑猩猩腺病毒載體,插入病毒棘突蛋白基因,進入體內主導人體細胞製造對付棘突蛋白的抗體,理論上產生的抗體也較精準。此技術曾用於研發伊波拉疫苗,但停留在實驗階段於非洲控制疫情。不過,牛津在11月的第三階段研究,意外發現研究參加者接種比原劑量低的疫苗後更有效,雖然後來重做實驗證實兩劑疫苗注射全劑最有效,但仍未公佈最新的有效率數據。英國政府已批准當地時間1月4日讓國民接種牛津疫苗,標準劑量為兩劑全劑,建議相隔時間為4至12星期。英媒引述未刊登數據,指第一劑及第二劑相隔時間越長越好,可提升整體抗體水平。另有兩名參加者出現橫貫性脊髓炎,一人證實患多發性硬化症,另一宗原因不明。
疫苗可對付變種病毒?
病毒自爆發以來變種上千次,疫苗如何應付?林醫生解釋,病毒不斷複製自身DNA,過程出錯而發生變異屬無可避免。變異不一定對病毒更有利,純粹時間越長,累積越多變異,有機會出現更厲害的病毒株。早前在英國就發現一種新病毒株傳播能力更強,懷疑其棘突蛋白結構更容易結合人類細胞。林醫生指,針對小量且未必在關鍵位置發生的基因變異,疫苗仍然能夠發揮功效。香港對英國封關至1月10日,「疫苗起碼對大部份病毒株有保護能力,即使不幸感染,相信亦能減低病徵嚴重性。」而新變種病毒株雖然傳播力更強,但暫時未有證據顯示會更加致命。
德國BioNTech藥廠稱如有需要,六星期內可調整疫苗成份,對付變種病毒株。林醫生解釋,mRNA利用人工製造的基因片段,要改變基因組成較容易。相比之下,科興「CoronaVac」使用的滅活疫苗技術,須利用新病毒株去製造另一批疫苗,理論上過程比較繁複。
打完疫苗等於疫情結束?
群體免疫是防疫重要一環,政府預購的疫苗預計2021年足夠供應全港人口,是否六至八成人有抗體就等於疫情結束?林醫生解釋,理論上最理想為八成人同一時段接種疫苗,社區內的群體免疫力才是最高。目前來說,三款疫苗保護時限、加強劑的劑量及相隔時間有待考證,市民在不同時段接受保護,似乎難以估算群體免疫人口。臨床研究亦未覆蓋16歲以下小童,及沒有足夠研究孕婦注射疫苗反應。「還要視乎外國的疫情控制,或多或少會有輸入個案,相信2021年要戴口罩的機會仍然非常大。」
影片:
【我是南丫島人】23歲仔獲cafe免費借位擺一人咖啡檔 $6,000租住350呎村屋:愛這裏互助關係 (果籽 Apple Daily) (https://youtu.be/XSugNPyaXFQ)
【香港蠔 足本版】流浮山白蠔收成要等三年半 天然生曬肥美金蠔日產僅50斤 即撈即食中環名人坊蜜餞金蠔 西貢六福酥炸生蠔 (果籽 Apple Daily) (https://youtu.be/Fw653R1aQ6s)
【這夜給惡人基一封信】大佬茅躉華日夜思念 回憶從8歲開始:兄弟有今生沒來世 (壹週刊 Next) (https://youtu.be/t06qjQbRIpY)
【太子餃子店】新移民唔怕蝕底自薦包餃子 粗重功夫一腳踢 老闆刮目相看邀開店:呢個女人唔係女人(飲食男女 Apple Daily) https://youtu.be/7CUTg7LXQ4M)
【娛樂人物】情願市民留家唔好出街聚餐 鄧一君兩麵舖執笠蝕200萬 (蘋果日報 Apple Daily) (https://youtu.be/e3agbTOdfoY)
果籽 :http://as.appledaily.com
籽想旅行:http://travelseed.hk
健康蘋台: http://applehealth.com.hk
動物蘋台: http://applepetform.com
#疫苗 #醫生 #群體免疫 #變種病毒 #口罩
#果籽 #StayHome #WithMe #跟我一樣 #宅在家
![post-title](https://i.ytimg.com/vi/X_bipfgNuLI/hqdefault.jpg)
單株抗體結構 在 對抗漸凍人及相關神經退化疾病的結構專一型單株抗體 - YouTube 的必吃
![影片讀取中](/images/youtube.png)
本團隊首先證實錯誤摺疊的TDP-43蛋白會構成具有神經細胞毒性的寡聚體(oligomer)形式的聚集物,並發現高親和性的TDP-43寡聚體專一性 單株抗體 (TDP-O9)能 ... ... <看更多>
單株抗體結構 在 單株抗體的製造技術就此產生 ! 在融合瘤技術 ... - Facebook 的必吃
科學家根據不同需求改造單株抗體的結構,如藥物與抗體複合物(antibody-drug conjugate,ADC)可以透過抗體,更專一的把藥物送到作用位置;雙特異性 ... ... <看更多>