用深度神經網路求解「薛丁格方程式」,AI 開啟量子化學新未來
作者 雷鋒網 | 發布日期 2021 年 01 月 02 日 0:00 |
19 世紀末,量子力學的提出為解釋微觀物質世界打開了一扇大門,徹底改變了人類對物質結構及相互作用的理解。已有實驗證明,量子力學解釋了許多被預言、無法直接想像的現象。
由此,人們也形成了一種既定印象,所有難以理解的問題都可以透過求解量子力學方程式來解決。
但事實上能夠精確求解方程式的體系少之又少。
薛丁格方程式是量子力學的基本方程式,即便已經提出七十多年,它的氫原子求解還是很困難,超過兩個電子的氫原子便很難保證精確度。
不過,多年來科學家們一直在努力克服這一難題。
最近,來自柏林自由大學(Freie Universität Berlin) 的科學團隊取得了突破性進展,他們發表的一篇名為《利用深度神經網路解電子薛丁格方程式》的論文,登上《Nature Chemistry》子刊。
論文明確指出:利用人工智慧求解薛丁格方程式基態解,達到了前所未有的準確度和運算效率。該人工智慧即為深度神經網路(Deep-neural-network),他們將其命名為 PauliNet。
在介紹它之前,我們先來簡單了解薛丁格方程式。
什麼是薛丁格方程式?
薛丁格方程式(Schrödinger Equation),是量子力學中的一個基本方程式。又稱薛丁格波動方程式(Schrödinger Wave Equation),它的命名來自一位名為埃爾溫·薛丁格(Erwin Schrödinger)的奧地利物理學家。
Erwin 曾在 1933 年獲得諾貝爾物理學獎,是量子力學奠基人之一。他在 1926 年發表的量子波形開創性論文中,首次提出了薛丁格方程式。它是一個非相對論的波動方程式,反映了描述微觀粒子的狀態隨時間變化的規律。
具體來說,將物質波的概念和波動方程式相結合建立二階偏微分方程式,以描述微觀粒子的運動,每個微觀系統都有一個相應的薛丁格方程式,透過「解方程式」可得到波函數的具體形式以及對應的能量,從而了解微觀系統的性質。
薛丁格方程式在量子力學的地位,類似牛頓運動定律在經典力學的地位,在物理、化學、材料科學等多領域都有廣泛應用價值。
比如,應用量子力學的基本原理和方法研究化學問題已形成「量子化學」基礎學科,研究範圍包括分子的結構、分子結構與性能之間的關係;分子與分子之間的相互碰撞、相互作用等。
也就是說,在量子化學,透過求解薛丁格方程式可以用來預測出分子的化學和物理性質。
波函數(Wave Function)是求解薛丁格方程式的關鍵,在每個空間位置和時間都定義一個物理系統,並描述系統隨時間的變化,如波粒二象性。同時還能說明這些波如何受外力或影響發生改變。
以下透過氫原子求解可得到正確的波函數。
不過,波函數是高維實體,使捕獲特定編碼電子相互影響的頻譜變得異常困難。
目前在量子化學領域,很多方法都證實無法解決這難題。如利用數學方法獲得特定分子的能量,會限制預測的精確度;使用大量簡單的數學構造塊表示波函數,無法使用少數原子進行計算等。
在此背景下,柏林自由大學科學團隊提出了一種有效的應對方案。團隊成員簡‧赫爾曼(Jan Hermann)稱,到目前為止,離群值(Outlier)是最經濟有效的密度泛函理論(Density functional theory ,一種研究多電子體系電子結構的方法)。相比之下,他們的方法可能更成功,因在可接受計算成本下提供前所未有的精確度。
PauliNet:物理屬性引入 AI 神經網路
Hermann 所說的方法稱為量子蒙地卡羅法。
論文顯示,量子蒙地卡羅(Quantum Monte Carlo)法提供可能的解決方案:對大分子來說,可縮放和並行化,且波函數的精確性只受 Ansatz 靈活性的限制。
具體來說,團隊設計一個深層神經網路表示電子波函數,這是一種全新方法。PauliNet 有當成基準內建的多參考 Hartree-Fock 解決方案,結合有效波函數的物理特性,並使用變分量子蒙地卡洛訓練。
弗蘭克‧諾(Frank Noé)教授解釋:「不同於簡單標準的數學公式求解波函數,我們設計的人工神經網路能夠學習電子如何圍繞原子核定位的複雜模式。」
電子波函數的獨特特徵是反對稱性。當兩個電子交換時,波函數必須改變符號。我們必須將這種特性構建到神經網路體系結構才能工作。
這類似包立不相容原理(Pauli’s Exclusion Principle),因此研究人員將該神經網路體系命名為「PauliNet」。
除了包立不相容原理,電子波函數還具有其他基本物理特性。PauliNet 成功之處不僅在於利用 AI 訓練數據,還在將這些物理屬性全部整合到深度神經網路。
對此,FrankNoé 還特意強調說:
「將基本物理學納入 AI 至關重要,因為它能夠做出有意義的預測,這是科學家可以為 AI 做出有實質性貢獻的地方,也是我們關注的重點。」
實驗結果:高精確度、高效率
PauliNet 對電子薛丁格方程式深入學習的核心方法是波函數 Ansatz,它結合了電子波函數斯萊特行列式(Slater Determinants),多行列式展開(Multi-Determinant Expansion),Jastro 因子(Jastrow Factor),回流變換(backflow transformation,),尖點條件(Cusp Conditions)以及能夠編碼異質分子系統中電子運動複雜特徵的深層神經網路。如下圖:
論文中,研究人員將 PauliNet 與 SD-VMC(singledeterminant variational,標準單行列式變分蒙地卡羅)、SD-DMC(singledeterminant diffusion,標準單行列式擴散蒙地卡羅)和 DeepWF 進行比較。
實驗結果顯示,在氫分子(H_2)、氫化鋰(LiH)、鈹(Be)以及硼(B)和線性氫鏈 H_10 五種基態能量的對比下,PauliNe 相較於 SD-VMC、SD-DMC 以及 DeepWF 均表現出更高的精準度。
同時論文中還表示,與專業的量子化學方法相比──處理環丁二烯過渡態能量,其準確性達到一致性的同時,也能夠保持較高的計算效率。
開啟「量子化學」新未來
需要說明的是,該項研究屬於一項基礎性研究。
也就是說,它在真正應用到工業場景之前,還有很多挑戰需要克服。不過研究人員也表示,它為長久以來困擾分子和材料科學的難題提供了一種新的可能性和解決思路。
此外,求解薛丁格方程式在量子化學領域的應用非常廣泛。從電腦視覺到材料科學,它將會帶來人類無法想像的科學進步。雖然這項革命性創新方法離落地應用還有很長的一段路要走,但它出現並活躍在科學世界已足以令人興奮。
如 Frank Noé 教授所說:「相信它可以極大地影響量子化學的未來。」
附圖:▲ Ψ 表示波函數。
資料來源:https://technews.tw/2021/01/02/schrodinger-equation-ai/?fbclid=IwAR340MNmOkOxUQERLf4u3SK0Um6VQVBpvEkV_DxyxIIcUv8IP88btuXNJ6U
同時也有33部Youtube影片,追蹤數超過2萬的網紅數學老師張旭,也在其Youtube影片中提到,【摘要】 本影片講解定積分這個符號的直觀定義,定積分的發明來自於求函數曲線下的有向面積,為了熟悉定積分這個符號的幾何意義,我們先從曲線下面積的判別開始 【勘誤】 19:24 例題 3 的答案 pi 多了平方 若有發現其他錯誤,歡迎留言告知 【講義】 請到張旭老師臉書粉專評論區留下你的評論 然後私...
「反函數符號」的推薦目錄:
- 關於反函數符號 在 台灣物聯網實驗室 IOT Labs Facebook 的精選貼文
- 關於反函數符號 在 每天努力Hack國家!士修的17時間 Facebook 的最讚貼文
- 關於反函數符號 在 黃土條 Facebook 的最讚貼文
- 關於反函數符號 在 數學老師張旭 Youtube 的精選貼文
- 關於反函數符號 在 數學老師張旭 Youtube 的最佳解答
- 關於反函數符號 在 數學老師張旭 Youtube 的精選貼文
- 關於反函數符號 在 Re: [反函數] 一反函數問題… - 看板trans_math 的評價
- 關於反函數符號 在 #張旭微積分|微分篇|重點六:萊布尼茲微分符號與隱函數 ... 的評價
反函數符號 在 每天努力Hack國家!士修的17時間 Facebook 的最讚貼文
看到一篇熱門分享的貼文《一堂物理課,了解貧富差距的根源》,在某個經濟學社團引發激烈的學術(?)討論。合先敘明,我認為這位老師非常認真,很用心將物理學、經濟學和哲學連結起來。
Liou YanTing:一堂物理課,了解貧富差距的根源
https://www.facebook.com/permalink.php?story_fbid=3403616276360627&id=100001368650813
不過,將猜拳遊戲與氣體動力論胡亂連結,反而模糊了一些真正能套用的概念。在談論分配正義時,將財富自由分配簡化為貧富不均的對立,然後傾向政府需要介入。這是一種非常危險的「正義」,我不認同這叫做所謂「科學與人文的思辨之旅」。
※本篇附圖是網友提供:「沒有要酸的意思但我真的想到這張圖。」
Part 1
電容放電曲線呈指數衰減,放射線衰退曲線呈指數衰減,跟美國財富分配圖是不是有異曲同工之妙呢?紫外光殺菌的曲線也呈指數衰減,是不是跟猜拳遊戲還有財富分佈一樣呢?
這是典型的物理半調子。物理模型的相似性,來自數學模式的相似性,與物理現象無關。我最常舉的例子是,測不準定理來自波的數學性質,與量子力學無關的訊號波,也會有測不準定理,這些都可以用傅立葉分析推導。量子力學的意義在於賦予測不準定理另外的物理詮釋。
但我發現很多物理系學生誤以為測不準定理一定是量子力學的現象,甚至到研究所階段都不知道電機系做訊號對測不準的理解,搞不好比物理系更深刻。這是一種鄙視鏈和反鄙視鏈。
所以,文中的波茲曼分布,來自統計的數學性質,並不建立在氣體動力論之上。更何況,指數遞減現象在各種科學和工程領域都很常見,這是自然的數學模式。根據奧坎剃刀原則,你扯進氣體動力論,只是騙不懂物理的外行人,跟你一起誤解物理罷了。
只要某一現象符合「衰減速度與值成比例」性質,寫下數學式和解微分方程的結果,就必然出現指數衰減曲線。我認為這是數學程度40分就能理解,物理程度大概要60分,才不會被表象迷惑的性質。
數學系的訓練是提取抽象模式,但一般數學系學生沉迷於符號推演之美,不去思考真實問題。物理系的訓練是建構近似模型,但一般物理系學生時常忘記模型僅是近似,並且把數學模式的必然性誤理解為巧妙的真理。
這個我特別有感,因為我當年同時修數學系和物理系的課,花了很多時間掙扎兩邊做學問方法不相容。物理系學生大三修完量子物理,幾乎不會去思考波動力學為何與矩陣力學等價,對修過微分方程和線性代數的我卻是很自然的事,然而數學系學生卻大多不會碰觸量子力學,無從思考他們所學理論意義何在。
原文作者所犯的其實是物理系常見通病,連許多教授都無法倖免。由於缺乏對物理模型和數學模式的深刻理解,只由結果腦補關聯性,甚至把沒有物理意義的中間演算,硬套憑空想像的詮釋,美其名為物理圖像。我大學時期聽到這類似是而非的所謂「物理解釋」都覺得異常痛苦。
例如上述的指數衰減,如果你問一個成績優秀的物理系學生,他或許會列舉許多指數衰減的物理現象,並讚嘆物理規律的美妙。但能回答下一個問題的學生就少了,為什麼這些現象都呈指數衰減?
這問題其實很簡單,只要回到微分方程去看,它的本質是衰減速度與值成比例,凡是符合此性質,就必然得到指數衰減的數學規律。物理是參透自然的數學語言,對自然的理解,很大一部分取決於語言能力的掌握,即為我所強調的數學模式。
Part 2
對岸的知乎有一個討論串,更深入地探討了分配遊戲的模擬。
房间内有 100 人,每人有 100 块,每分钟随机给另一个人 1 块,最后这个房间内的财富分布怎样? - 知乎
https://www.zhihu.com/question/62250384
我覺得這篇文章沒什麼問題,你注意到他說隨機遊走相當於求解離散空間的熱傳導方程,這是將一個待解問題轉化為一個已知問題,純粹是數學模式的相似性,他沒有將隨機遊走的分布解,建立在熱力學物理之上。
貧富不均為穩定態,均富為非穩定態,其反直覺的思維誤區在於,「平均分布」僅是「穩定分布」的一種少見子集,絕大多數情況的「穩定分布」不是「平均分布」。例如,二項分布、常態分布,都不是人人均等。
說到底,「平均值」僅是平均後的一個值,常態分布以平均值為對稱,不代表區間每個值一定均等。
統計分布的穩定態,取決於機率密度函數的長相。你可以批評這個數據模擬,誤用熱力學模型解釋人類經濟現象,真實世界不存在完全隨機的交換行為等等。但這些批評並不到位。
因為它只是一個經濟行為的玩具模型(toy model),遊戲規則決定機率密度函數,進而決定穩定態的分布,算出來正好是狄利克雷分布。又恰巧與離散空間的熱傳導方程相似,則是後話。
我們也可以用一些物理的解釋。大多數人誤解了,物理的結果是「穩定態」,本來就不一定是「均等態」。在這個實驗之中,什麼條件會出現均等態?或許是每分鐘隨機分配給所有人自已手上所有的財產,能量的交換不加任何限制。
所以反過來想,遊戲規則限制了每分鐘隨機只能給另一個人1塊,當我因為機率的偶然,手上財產從100元掉到80元,我就更往破產的機率傾斜了。反之,我從100元變為120元,但下一回合我仍然只要給別人1塊,我的優勢就隨時間演化變大了。
我個人特別喜歡它後續做的「允許負債」模擬,以及「努力多1%競爭優勢」模擬,令人慶幸沒有出現反直覺的悲劇結果。自由競爭之下努力有意義,相當勵志,不是嗎?
經濟學的解釋,當然不能只是「要求平等均富的社會本身正是反自然的存在」,那僅僅只是「限定遊戲規則之下貧富不均是統計的穩定態」。
至於這個遊戲規則,離真實世界有多遠,當然很遠,但咱們學經濟的講機會成本。你不用這個遊戲規則,用另一個遊戲規則,會不會發生一樣的貧富不均結果?看起來很有可能會,但沒證據我不確定,有一說一才是科學精神。
或許在任何遊戲規則之下,只要不脫離「每分鐘隨機給出的數額有限制」的基本假設,都會跑出貧富不均的分布結果。而這個基本假設,在真實世界中也不可能捨棄,那麼這個數據模擬就有其參考價值。我們可以說,不論任何制度必然會有貧富不均的狀況出現,這才是最正常的現象。
參考閱讀:
巴斯夏的蠟燭工坊:今天臉書有一篇遭到瘋傳的經濟學相關文章,堪稱經濟學程度的照妖鏡
https://www.facebook.com/329896911051695/photos/a.358878471486872/642324269808956/?type=3
(我貢獻了 巴斯夏的蠟燭工坊 這篇文章的某些段落。)
反函數符號 在 黃土條 Facebook 的最讚貼文
看到一篇熱門分享的貼文《一堂物理課,了解貧富差距的根源》,在某個經濟學社團引發激烈的學術(?)討論。合先敘明,我認為這位老師非常認真,很用心將物理學、經濟學和哲學連結起來。
Liou YanTing:一堂物理課,了解貧富差距的根源
https://www.facebook.com/permalink.php?story_fbid=3403616276360627&id=100001368650813
不過,將猜拳遊戲與氣體動力論胡亂連結,反而模糊了一些真正能套用的概念。在談論分配正義時,將財富自由分配簡化為貧富不均的對立,然後傾向政府需要介入。這是一種非常危險的「正義」,我不認同這叫做所謂「科學與人文的思辨之旅」。
※本篇附圖是網友提供:「沒有要酸的意思但我真的想到這張圖。」
Part 1
電容放電曲線呈指數衰減,放射線衰退曲線呈指數衰減,跟美國財富分配圖是不是有異曲同工之妙呢?紫外光殺菌的曲線也呈指數衰減,是不是跟猜拳遊戲還有財富分佈一樣呢?
這是典型的物理半調子。物理模型的相似性,來自數學模式的相似性,與物理現象無關。我最常舉的例子是,測不準定理來自波的數學性質,與量子力學無關的訊號波,也會有測不準定理,這些都可以用傅立葉分析推導。量子力學的意義在於賦予測不準定理另外的物理詮釋。
但我發現很多物理系學生誤以為測不準定理一定是量子力學的現象,甚至到研究所階段都不知道電機系做訊號對測不準的理解,搞不好比物理系更深刻。這是一種鄙視鏈和反鄙視鏈。
所以,文中的波茲曼分布,來自統計的數學性質,並不建立在氣體動力論之上。更何況,指數遞減現象在各種科學和工程領域都很常見,這是自然的數學模式。根據奧坎剃刀原則,你扯進氣體動力論,只是騙不懂物理的外行人,跟你一起誤解物理罷了。
只要某一現象符合「衰減速度與值成比例」性質,寫下數學式和解微分方程的結果,就必然出現指數衰減曲線。我認為這是數學程度40分就能理解,物理程度大概要60分,才不會被表象迷惑的性質。
數學系的訓練是提取抽象模式,但一般數學系學生沉迷於符號推演之美,不去思考真實問題。物理系的訓練是建構近似模型,但一般物理系學生時常忘記模型僅是近似,並且把數學模式的必然性誤理解為巧妙的真理。
這個我特別有感,因為我當年同時修數學系和物理系的課,花了很多時間掙扎兩邊做學問方法不相容。物理系學生大三修完量子物理,幾乎不會去思考波動力學為何與矩陣力學等價,對修過微分方程和線性代數的我卻是很自然的事,然而數學系學生卻大多不會碰觸量子力學,無從思考他們所學理論意義何在。
原文作者所犯的其實是物理系常見通病,連許多教授都無法倖免。由於缺乏對物理模型和數學模式的深刻理解,只由結果腦補關聯性,甚至把沒有物理意義的中間演算,硬套憑空想像的詮釋,美其名為物理圖像。我大學時期聽到這類似是而非的所謂「物理解釋」都覺得異常痛苦。
例如上述的指數衰減,如果你問一個成績優秀的物理系學生,他或許會列舉許多指數衰減的物理現象,並讚嘆物理規律的美妙。但能回答下一個問題的學生就少了,為什麼這些現象都呈指數衰減?
這問題其實很簡單,只要回到微分方程去看,它的本質是衰減速度與值成比例,凡是符合此性質,就必然得到指數衰減的數學規律。物理是參透自然的數學語言,對自然的理解,很大一部分取決於語言能力的掌握,即為我所強調的數學模式。
Part 2
對岸的知乎有一個討論串,更深入地探討了分配遊戲的模擬。
房间内有 100 人,每人有 100 块,每分钟随机给另一个人 1 块,最后这个房间内的财富分布怎样? - 知乎
https://www.zhihu.com/question/62250384
我覺得這篇文章沒什麼問題,你注意到他說隨機遊走相當於求解離散空間的熱傳導方程,這是將一個待解問題轉化為一個已知問題,純粹是數學模式的相似性,他沒有將隨機遊走的分布解,建立在熱力學物理之上。
貧富不均為穩定態,均富為非穩定態,其反直覺的思維誤區在於,「平均分布」僅是「穩定分布」的一種少見子集,絕大多數情況的「穩定分布」不是「平均分布」。例如,二項分布、常態分布,都不是人人均等。
說到底,「平均值」僅是平均後的一個值,常態分布以平均值為對稱,不代表區間每個值一定均等。
統計分布的穩定態,取決於機率密度函數的長相。你可以批評這個數據模擬,誤用熱力學模型解釋人類經濟現象,真實世界不存在完全隨機的交換行為等等。但這些批評並不到位。
因為它只是一個經濟行為的玩具模型(toy model),遊戲規則決定機率密度函數,進而決定穩定態的分布,算出來正好是狄利克雷分布。又恰巧與離散空間的熱傳導方程相似,則是後話。
我們也可以用一些物理的解釋。大多數人誤解了,物理的結果是「穩定態」,本來就不一定是「均等態」。在這個實驗之中,什麼條件會出現均等態?或許是每分鐘隨機分配給所有人自已手上所有的財產,能量的交換不加任何限制。
所以反過來想,遊戲規則限制了每分鐘隨機只能給另一個人1塊,當我因為機率的偶然,手上財產從100元掉到80元,我就更往破產的機率傾斜了。反之,我從100元變為120元,但下一回合我仍然只要給別人1塊,我的優勢就隨時間演化變大了。
我個人特別喜歡它後續做的「允許負債」模擬,以及「努力多1%競爭優勢」模擬,令人慶幸沒有出現反直覺的悲劇結果。自由競爭之下努力有意義,相當勵志,不是嗎?
經濟學的解釋,當然不能只是「要求平等均富的社會本身正是反自然的存在」,那僅僅只是「限定遊戲規則之下貧富不均是統計的穩定態」。
至於這個遊戲規則,離真實世界有多遠,當然很遠,但咱們學經濟的講機會成本。你不用這個遊戲規則,用另一個遊戲規則,會不會發生一樣的貧富不均結果?看起來很有可能會,但沒證據我不確定,有一說一才是科學精神。
或許在任何遊戲規則之下,只要不脫離「每分鐘隨機給出的數額有限制」的基本假設,都會跑出貧富不均的分布結果。而這個基本假設,在真實世界中也不可能捨棄,那麼這個數據模擬就有其參考價值。我們可以說,不論任何制度必然會有貧富不均的狀況出現,這才是最正常的現象。
參考閱讀:
巴斯夏的蠟燭工坊:今天臉書有一篇遭到瘋傳的經濟學相關文章,堪稱經濟學程度的照妖鏡
https://www.facebook.com/329896911051695/photos/a.358878471486872/642324269808956/?type=3
(我貢獻了 巴斯夏的蠟燭工坊 這篇文章的某些段落。)
反函數符號 在 數學老師張旭 Youtube 的精選貼文
【摘要】
本影片講解定積分這個符號的直觀定義,定積分的發明來自於求函數曲線下的有向面積,為了熟悉定積分這個符號的幾何意義,我們先從曲線下面積的判別開始
【勘誤】
19:24 例題 3 的答案 pi 多了平方
若有發現其他錯誤,歡迎留言告知
【講義】
請到張旭老師臉書粉專評論區留下你的評論
然後私訊張旭老師臉書粉專索取講義,通過審核即可獲得講義連結
👉 https://www.facebook.com/changhsu.math/reviews
【習題】
請到張旭的生存用微積分社團下載
👉 https://www.facebook.com/groups/changhsumath666.calculus
【附註】
本影片適合理、工、商、管學院學生觀看
【加入會員】
歡迎加入張旭老師頻道會員
付費訂閱支持張旭老師,協助本頻道發展並獲得會員專屬福利
👉 https://www.youtube.com/channel/UCxBv4eDVLoj5XlRKM4iWj9g/join
【購買下學期微積分教學影片】
本頻道僅公開張旭微積分上學期教學影片
若你需要下學期微積分影片,請參考我們的方案
👉 https://changhsumath.1shop.tw/calculus2nd
【學習地圖】
【極限篇】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXjkwxSf-xDV47b9ZXDUkYiN)
【連續篇】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXgntIXH9Jrpgo5O6y_--58L)
【微分篇】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXiPgR9GLKtro3CTr6OIgdMg)
【微分應用篇】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXjNzXUa9hI2IfknA8Q7iSwE)
【積分篇】
重點一:定積分直觀觀念 👈 目前在這裡
重點二:奇偶函數的積分 (https://youtu.be/-UOnX6PWogc)
重點三:定積分正式定義 (https://youtu.be/9igA5vuk5Zc)
重點四:積分運算性質 (https://youtu.be/WOyCaUMVmbw)
重點五:微積分基本定理 I (https://youtu.be/T3o_OU2J9ss)
重點六:不定積分與反導函數 (https://youtu.be/fJhHZ9Hk1ec)
重點七:雙曲函數 (https://youtu.be/gfjGpy-pNIs)
重點八:積分表 (沒有講解影片)
重點九:四大積分基本方法之一:變數變換法 (https://youtu.be/trMid_t8_us)
重點十:四大積分基本方法之二:三角置換法 (https://youtu.be/VL--z89nYBs)
重點十一:四大積分基本方法之三:分部積分法 (https://youtu.be/VwUK8_JAuwk)
重點十二:積分表 (沒有講解影片)
重點十三:四大積分基本方法之四:部份分式法 (https://youtu.be/FDxrP8FT3yE)
【積分後篇】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXhFI6OnDy0la5MqPOnWtoU7)
張旭微積分下學期課程影片將不會在 YouTube 頻道上免費公開
若你覺得我的課程適合你,且你下學期也有微積分要修
可以參考購課頁面 👉 https://changhsumath.1shop.tw/calculus2nd
【版權宣告】
本影片版權為張旭 (張舜為) 老師所有
嚴禁用於任何商業用途⛔
如果有學校老師在課堂使用我的影片的話
請透過以下聯絡方式通知我讓我知道,謝謝
FB:https://www.facebook.com/changhsu.math
IG:https://www.instagram.com/changhsu.math
【張旭老師其他社群平台】
Twitch:https://www.twitch.tv/changhsu_math
LBRY:https://odysee.com/@changhsumath:b
Bilibili:https://space.bilibili.com/521685904
SoundOn:https://sndn.link/changhsu_math
Discord 邀請碼:6ZKqJX9kaM
【贊助張旭老師】
歐付寶:https://payment.opay.tw/Broadcaster/Donate/E1FDE508D6051EA8425A8483ED27DB5F (台灣境內用這個)
綠界:https://p.ecpay.com.tw/B3A1E (台灣境外用這個)
#張旭微積分 #有錯歡迎留言指教 #喜歡請按讚訂閱分享
反函數符號 在 數學老師張旭 Youtube 的最佳解答
【摘要】
本影片主要說明極限何時可以和微分或積分符號交換次序,又微分和積分在怎樣的條件下可以交換次序;這些問題牽涉到一個很重要的課題,那就是均勻連續的概念
【加入會員】
歡迎加入張旭老師頻道會員
付費定閱支持張旭老師,讓張旭老師能夠拍更多的教學影片
https://www.youtube.com/channel/UCxBv4eDVLoj5XlRKM4iWj9g/join
【會員等級說明】
博士等級:75 元 / 月
- 支持我們拍攝更多教學影片
- 可在 YT 影片留言處或聊天室使用專屬貼圖
- 你的 YT 名稱前面會有專屬會員徽章
- 可觀看會員專屬影片 (張旭老師真實人生挑戰、許願池影片)
- 可加入張旭老師 YT 會員專屬 DC 群
碩士等級:300 元 / 月
- 享有博士等級所有福利
- 每個月可問 6 題高中或大學的數學問題 (沒問完可累積)
學士等級:750 元 / 月
- 享有博士等級所有福利
- 每個月可問 15 題高中或大學的數學問題 (沒問完可累積)
- 可許願希望我們拍攝講解的主題 (高中、大學數學)
- 可免費參加張旭老師線上考衝班 (名額不可轉讓)
家長會等級:1600 元 / 月
- 享有博士等級所有福利
- 沒有解題服務,如需要,得另外購入點數換取服務
- 可許願希望我們拍攝講解的主題 (高中、大學數學)
- 可免費參加張旭老師線上考衝班 (名額可轉讓)
- 可參與頻道經營方案討論
- 可免費獲得張旭老師實體產品
- 可以優惠價報名參加張旭老師所舉辦之活動
股東會等級:3200 元 / 月
- 享有家長會等級所有福利
- 一樣沒有解題服務,如需要,得另外購入點數換取服務
- 本頻道要募資時擁有優先入股權
- 可加入張旭老師商業結盟
- 可參加商業結盟餐會
- 繳滿六個月成為終生會員,之後可解除自動匯款
- 終生會員只需要餐會費用即可持續參加餐會
【勘誤】
無,有任何錯誤歡迎留言告知
【習題】
無
【講義】
無
【附註】
本系列影片僅限 YouTube 會員優先觀看
非會員僅開放「單數集」影片
若想看到所有許願池影片
請加入數學老師張旭 YouTube 會員
加入會員連結 👉 https://reurl.cc/Kj3x7m
【張旭的話】
你好,我是張旭老師
這是我為本頻道會員所專門拍攝的許願池影片
如果你喜歡我的教學影片
歡迎訂閱我的頻道🔔,按讚我的影片👍
並幫我分享給更多正在學大學數學的同學們,謝謝
【學習地圖】
EP01:向量微積分重點整理 (https://youtu.be/x9Z23o_Z5sQ)
EP02:泰勒展開式說明與應用 (https://youtu.be/SByv7fMtMTY)
EP03:級數審斂法統整與習題 (https://youtu.be/qXCdZF8CV7o)
EP04:積分技巧統整 (https://youtu.be/Ioxd9eh6ogE)
EP05:極座標統整與應用 (https://youtu.be/ksy3siNDzH0)
EP06:極限嚴格定義題型 + 讀書方法分享 (https://youtu.be/9ItI09GTtNQ)
EP07:常見的一階微分方程題型及解法 (https://youtu.be/I8CJhA6COjk)
EP08:重製中
EP09:反函數定理與隱函數定理 (https://youtu.be/9CPpcIVLz7c)
EP10:多變數求極值與 Lagrange 乘子法 (https://youtu.be/XsOmQOTzdSA)
EP11:Laplace 轉換 (https://youtu.be/GZRWgcY5i6Y)
EP12:Fourier 級數與 Fourier 轉換 (https://youtu.be/85q-2nInw7Y)
EP13:換變數定理與 Jacobian 行列式 (https://youtu.be/7z4ad1I0b7o)
EP14:Cayley-Hamilton 定理 & 極小多項式 (https://youtu.be/9c-lCLV4F0M)
EP15:極限、微分和積分次序交換的條件 👈 目前在這裡
EP16:機率密度函數 (上) (https://youtu.be/PR1NSAOP_Z0)
EP17:機率密度函數 (下) (https://youtu.be/tDQ3o8uQ_Ks)
持續更新中...
【版權宣告】
本影片版權為張旭 (張舜為) 老師所有
嚴禁用於任何商業用途⛔
如果有學校老師在課堂使用我的影片的話
請透過以下聯絡方式通知我讓我知道,謝謝
【張旭老師其他頻道或社群平台】
FB:https://www.facebook.com/changhsu.math
IG:https://www.instagram.com/changhsu.math
Twitch:https://www.twitch.tv/changhsu_math
Bilibili:https://space.bilibili.com/521685904
【其他贊助管道】
歐付寶:https://payment.opay.tw/Broadcaster/Donate/E1FDE508D6051EA8425A8483ED27DB5F (台灣境內用這個)
綠界:https://p.ecpay.com.tw/B3A1E (台灣境外用這個)
#極限微分積分次序交換 #均勻連續 #萊布尼茲積分法則
反函數符號 在 數學老師張旭 Youtube 的精選貼文
【摘要】
本習題也不會太難,只要先求切線,然後再將此切線與原函數解聯立即可
【勘誤】
無,若有發現任何錯誤,歡迎留言告知
【講義】
請到張旭老師臉書粉專評論區留下你的評論
然後私訊張旭老師臉書粉專索取講義,通過審核即可獲得講義連結
👉 https://www.facebook.com/changhsu.math/reviews
【習題】
請到張旭的生存用微積分社團下載
👉 https://www.facebook.com/groups/changhsumath666.calculus
【附註】
本影片適合理、工、商、管學院學生觀看
【加入會員】
歡迎加入張旭老師頻道會員
付費訂閱支持張旭老師,協助本頻道發展並獲得會員專屬福利
👉 https://www.youtube.com/channel/UCxBv4eDVLoj5XlRKM4iWj9g/join
【購買下學期微積分教學影片】
本頻道僅公開張旭微積分上學期教學影片
若你需要下學期微積分影片,請參考我們的方案
👉 https://changhsumath.1shop.tw/calculus2nd
【學習地圖】
【極限篇】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXjkwxSf-xDV47b9ZXDUkYiN)
【連續篇】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXgntIXH9Jrpgo5O6y_--58L)
【微分篇】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXiPgR9GLKtro3CTr6OIgdMg)
重點一:導數與微分的概念 (https://youtu.be/G9feQfwpdKU)
重點二:微分運算律 (https://youtu.be/SuAJkre9lh8)
重點三:微分合成律 (連鎖律) (https://youtu.be/tKrx2zqdSug)
重點四:反三角函數的導函數 (https://youtu.be/ffbAGtInqZg)
重點五:微分表 (僅講義,無影片)
重點六:萊布尼茲微分符號與隱函數微分法 (https://youtu.be/vP77TX3gzSg)
重點七:微分工具整合
├ 精選範例 7-1 (https://youtu.be/g4IQMtV4lYA)
├ 精選範例 7-2 (https://youtu.be/ywzWD1I8gd4)
├ 精選範例 7-3 (https://youtu.be/iodMYj5hgTA)
├ 精選範例 7-4 (https://youtu.be/8FSrlga-cKE)
└ 精選範例 7-5 (https://youtu.be/znjo3uZ-roQ)
重點八:切線專論 (https://youtu.be/UrNweUmyd_M)
├ 精選範例 8-1 (https://youtu.be/dSwgJQ5nZLE)
├ 精選範例 8-2 (https://youtu.be/_4gtODINypU)
├ 精選範例 8-3 (https://youtu.be/awyFW5QZPes)
├ 精選範例 8-4 (https://youtu.be/LSTgLk0UUJA)
├ 精選範例 8-5 (https://youtu.be/eY65HUBHuYY)
└ 精選範例 8-6 👈 目前在這裡
【微分應用篇】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXjNzXUa9hI2IfknA8Q7iSwE)
【積分前篇】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXikxrvbQAnPa_l3nFh5m9XK)
【積分後篇】(https://www.youtube.com/playlist?list=PLKJhYfqCgNXhFI6OnDy0la5MqPOnWtoU7)
張旭微積分下學期課程影片將不會在 YouTube 頻道上免費公開
若你覺得我的課程適合你,且你下學期也有微積分要修
可以參考購課頁面 👉 https://changhsumath.1shop.tw/calculus2nd
【版權宣告】
本影片版權為張旭 (張舜為) 老師所有
嚴禁用於任何商業用途⛔
如果有學校老師在課堂使用我的影片的話
請透過以下聯絡方式通知我讓我知道,謝謝
FB:https://www.facebook.com/changhsu.math
IG:https://www.instagram.com/changhsu.math
【張旭老師其他社群平台】
Twitch:https://www.twitch.tv/changhsu_math
LBRY:https://odysee.com/@changhsumath:b
Bilibili:https://space.bilibili.com/521685904
SoundOn:https://sndn.link/changhsu_math
Discord 邀請碼:6ZKqJX9kaM
【贊助張旭老師】
歐付寶:https://payment.opay.tw/Broadcaster/Donate/E1FDE508D6051EA8425A8483ED27DB5F (台灣境內用這個)
綠界:https://p.ecpay.com.tw/B3A1E (台灣境外用這個)
#張旭微積分 #有錯歡迎留言指教 #喜歡請按讚訂閱分享
反函數符號 在 #張旭微積分|微分篇|重點六:萊布尼茲微分符號與隱函數 ... 的必吃
... 介紹萊布尼茲微分 符號 d/dx,這個 符號 的優勢在於可以明確指示對哪個變數微分,而且dy/dx 更有切線斜率的感覺;然後介紹高階微分與隱 函數 微分法, ... ... <看更多>
反函數符號 在 Re: [反函數] 一反函數問題… - 看板trans_math 的必吃
※ 引述《handsome0716 (SIGMA)》之銘言:
: 想問一個關於反函數的問題
: 我知道反函數的定義 也就是原本函數的定義域為另一函數的值域 原本函數的值域變為
: 新函數的定義域 則兩函數互為反函數
這樣描述還會包括進很多不是互相為反函數的組合
f : R -> R
f(x) = x+1
g : R -> R
g(x) = x+2
這樣定的話 f 的值域跟定義域都是 R, g 也是, 他們不互為反函數
重要的是反函數要把原本函數送過去的東西再送回來, 讓他們兩個合成後是 identity
: 請問…假如一函數f(x)=y=x-1
: 則f^-1(y)=x=y+1=g(y)以及f^-1(x)=y=x+1=g(x)
: 這兩個到底哪個才是f(x)的反函數 印象中會因習慣問題講自變數以x表示 然後f^-1(y)
: =x=y+1=g(y)改為f^-1(x)=y=x+1=g(x)然後才會跟f(x)對稱
: 但第一張圖突然又說g(y)是f(x)的反函數 那g(x)又是什麼…
1. 函數裡面的變數是 "dummy variable", 不論我們用什麼變數, 他們表示的都是
同一個函數. 令
f(x) = x^2
g(t) = t^2
h(u) = u^2
r(a) = a^2
不僅 f, g, h, r 相等, 而且 f(x) = x^2 跟 f(t) = t^2 跟 f(z) = z^2 通通一樣
函數就是把一個東西映射到另一個東西, 而 f(x) = x+1 這種記號的意思就是,
對於所有在定義域中的物件, v, 我們把它關聯到對應域中的物件 v+1
其中我們應該要知道在對應域中 "v+1" 要怎麼解讀
2. 文章中符號有混淆的地方
f(x) = x-1
f(t) = t-1
f(z) = z-1
這裡的 x, t, z 是 dummy variable, 用來代表這個函數要把什麼數字
送到什麼數字, 用什麼符號都一樣
"令變數 y = f(x), f(x) = x-1"
這句話想表達的是, 在以下環境中, 我們希望 y 是 x 的函數.
雖然我們只寫一個字母 y, 但是心中要把他想像成 f(x), 想像成 x-1 之類的算式
而當我們寫 g(y) = y+1, 這裡的 y 跟上面是毫無關聯的, 他只是在表示
g 這個函數是把一個數字 v 送到 v+1, 這個 y 是用來描述 g 這個函數的
dummy variable, 不是 y = f(x) 的 y
3. 若 y = f(x) = x-1
則 f^{-1}(y) = y+1
到此為止, 沒有 f^{-1}(x) = y = x-1 這個等式
我們知道 f 會把 x 送到 x-1, 也就是把 5 送到 4, 把 123 送到 122
而 f 的反函數會把一個數 y 送到 y+1, 也就是 7 送到 8, 把 255 送到 256
f^{-1}(y) = y+1, 我們可以任意改變變數, 不影響 "把什麼數字送到什麼數字":
f^{-1}(w) = w+1
f^{-1}(t) = t+1
他們都是一樣的. 因此 f^{-1}(x) = x+1 才會代表同一個函數
假如我們認定了符號 y := x-1, 那麼顯然 f^{-1}(x) = x+1 不等於 y
: 第二張圖說f^-1(y)為反函數 讓我覺得很矛盾 f^-1(y)不是只是f(x)移項的結果嗎 然
: 後要把y換成x 也就是f^-1(x) 這個東西才是反函數吧…
:
:
符號上習慣讓 "f^{-1}(y)" 指稱 f(x) 的反函數罷了
函數重要的是輸入與輸出之間的關係, 中間用什麼方式來描述都不影響的
也有的介紹到集合論的書會用數對的集合來建構函數:
把 f : N -> N
f(x) = x+7
這個函數, 用集合 {(1,8), (2,9), (3,10), (4,11), (5,12), ...} 來表示
這樣我們知道輸入是 2 時, 也能輸出要是 9
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 165.124.144.106
※ 文章網址: https://www.ptt.cc/bbs/trans_math/M.1513445249.A.3B1.html
要先注意, 把函數連結到平面也是我們自己訂的. 例如我們說假如對一個函數
f(t) = ..., 在 t = x 的時候值是 y (= f(x)), 那我們就把點 (x,y) 畫在平面上.
那這樣變換 dummy variable 對作圖有沒有影響? 並沒有, 因為還是同一個函數,
但是我們可以改變把它畫在平面上的畫法.
假如每個函數我們固定以輸入為 x 座標, 輸出為 y 座標, 那毫無疑問的一個函數
跟他的反函數的圖形會沿著 y = x 這條直線對稱, 這是因為反函數定義就是送過去
再送回來不會變:
兩個函數 f, g 互為反函數(加一些範圍適當什麼的條件), 那
g(f(u)) = u 對所有適當的 u
f(g(v)) = v 對所有適當的 v
這兩個函數畫成圖會怎麼樣呢? 假設 (x,y) 在 f 的圖形上, 也就是說
y = f(x), 那我們知道 x = g(y). 因此 (y,x) 在 g 的圖形上. 反過來說也
成立, 因此他們圖形沿 y = x 對稱.
但我們可以用不同的方法來畫圖. 對於以下的式子
y = f(x)
x = f^{-1}(y)
假如我們說: 讓我們畫圖時, 這式子裡的 x 就代表 x 座標, y 就代表 y 座標,
那當然也可以(向你舉的那個 x = f^{-1}(y) = y-1 的例子). 而這個時候他們
畫出來的圖形就是同一條了:
(x,y) 在 f 的圖形上 <=> y = f(x) <=> x = f^{-1}(y) <=> (x,y) 在 f^{-1}
描述的曲線上
那這個時候 dummy variable 可不可以變? 可不可以寫 z = f^{-1}(x), w = f^{-1}(t)?
變 dummy variable 的話函數本身當然不會變, 但我們前面說的 x 代表 x 座標 y
代表 y 座標這個連結就兜不起來了.
其實這種用法在微積分裡也滿常見的. 例如我們描述一條 x-y 平面上的直線 L
也可以描述說 L 就是滿足 x - y + 1 = 0 的點的集合, 要把它看成函數的時候
可以把 x 看成 y 的函數也可以把 y 看成 x 的函數. 不論哪種看法我們想描述
的是同一條線.
※ 編輯: suhorng (165.124.144.106), 12/18/2017 08:56:33
... <看更多>